IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v25y2018i2d10.1007_s10690-018-9240-y.html
   My bibliography  Save this article

Some Further Results on the Tempered Multistable Approach

Author

Listed:
  • Olivier Courtois

    (emlyon business school)

Abstract

This article provides new results on the tempered multistable approach. After a preliminary section recalling the main definitions, we show the correspondence between a series representation and a characteristic function representation for asymmetrical field-based tempered multistable processes and for asymmetrical independent increments tempered multistable processes. We also show that both processes are semimartingales, which is a convenient property in finance. Next, we study the structure of autocorrelations that is conveyed by this approach. Finally, we provide an illustration showing the term structures of Value-at-Risk that can be obtained with this model.

Suggested Citation

  • Olivier Courtois, 2018. "Some Further Results on the Tempered Multistable Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(2), pages 87-109, June.
  • Handle: RePEc:kap:apfinm:v:25:y:2018:i:2:d:10.1007_s10690-018-9240-y
    DOI: 10.1007/s10690-018-9240-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10690-018-9240-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10690-018-9240-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components1," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55, October.
    2. Benoit Mandelbrot & Howard M. Taylor, 1967. "On the Distribution of Stock Price Differences," Operations Research, INFORMS, vol. 15(6), pages 1057-1062, December.
    3. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    4. Küchler, Uwe & Tappe, Stefan, 2014. "Exponential stock models driven by tempered stable processes," Journal of Econometrics, Elsevier, vol. 181(1), pages 53-63.
    5. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    6. Olivier Le Courtois & Christian Walter, 2014. "The Computation of Risk Budgets under the Lévy Process Assumption," Finance, Presses universitaires de Grenoble, vol. 35(2), pages 87-108.
    7. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Faroni & Olivier Le Courtois & Krzysztof Ostaszewski, 2022. "Equivalent Risk Indicators: VaR, TCE, and Beyond," Risks, MDPI, vol. 10(8), pages 1-19, July.
    2. Silvia Faroni & Olivier Le Courtois & Krzysztof Ostaszewski, 2022. "Equivalent Risk Indicators : VaR, TCE, and Beyond," Post-Print hal-04325627, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Le Courtois, 2018. "Some Further Results on the Tempered Multistable Approach," Post-Print hal-02312142, HAL.
    2. George Bouzianis & Lane P. Hughston, 2019. "Determination Of The Lévy Exponent In Asset Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, February.
    3. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    4. Oscar Gutierrez, 2008. "Option valuation, time-changed processes and the fast Fourier transform," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 103-108.
    5. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    6. Ron Chan & Simon Hubbert, 2014. "Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme," Review of Derivatives Research, Springer, vol. 17(2), pages 161-189, July.
    7. Laura Ballotta, 2009. "Pricing and capital requirements for with profit contracts: modelling considerations," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 803-817.
    8. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    9. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    10. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    11. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    12. Vladimir K. Kaishev & Dimitrina S. Dimitrova, 2009. "Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options," Management Science, INFORMS, vol. 55(3), pages 483-496, March.
    13. Fiorani, Filo, 2004. "Option Pricing Under the Variance Gamma Process," MPRA Paper 15395, University Library of Munich, Germany.
    14. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    15. Ballotta, Laura, 2005. "A Lévy process-based framework for the fair valuation of participating life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 173-196, October.
    16. Colino, Jesús P., 2008. "New stochastic processes to model interest rates : LIBOR additive processes," DES - Working Papers. Statistics and Econometrics. WS ws085316, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Buckley, Winston & Long, Hongwei & Perera, Sandun, 2014. "A jump model for fads in asset prices under asymmetric information," European Journal of Operational Research, Elsevier, vol. 236(1), pages 200-208.
    18. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    19. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    20. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:25:y:2018:i:2:d:10.1007_s10690-018-9240-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.