IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v9y1975i1p1-20.html
   My bibliography  Save this article

An Operating Strategy for a Commuter Bus System

Author

Listed:
  • Gérard C. Clarens

    (Ministerio de Obras Públicas, Caracas, Venezuela)

  • V. F. Hurdle

    (University of California, Berkeley, California)

Abstract

The operator of a bus system wishes to determine when and where to send each vehicle in order to minimize the sum of operating and user costs incurred in carrying commuters from a central terminal to destinations dispersed over the city and its suburbs. Application of a continuum approximation approach to this problem leads to an objective function which is a function of one unknown variable, the zone size. Analytic solutions are obtained for a number of special cases. If the problem parameters do not vary with the time of day, the optimal zone size for suburban locations is inversely proportional to the square root of the density of passenger destinations if the vehicles are filled to capacity, but to the cube root if they are not completely filled. A numerical example of this special case is used to illustrate a technique for application of the results.

Suggested Citation

  • Gérard C. Clarens & V. F. Hurdle, 1975. "An Operating Strategy for a Commuter Bus System," Transportation Science, INFORMS, vol. 9(1), pages 1-20, February.
  • Handle: RePEc:inm:ortrsc:v:9:y:1975:i:1:p:1-20
    DOI: 10.1287/trsc.9.1.1
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.9.1.1
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.9.1.1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcos Medina-Tapia & Francesc Robusté, 2019. "Implementation of Connected and Autonomous Vehicles in Cities Could Have Neutral Effects on the Total Travel Time Costs: Modeling and Analysis for a Circular City," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    2. Sivakumaran, Karthikgeyan & Li, Yuwei & Cassidy, Michael J. & Madanat, Samer, 2010. "Cost-Saving Properties of Schedule Coordination in a Simple Trunk-and-Feeder Transit System," University of California Transportation Center, Working Papers qt9qr8s3hx, University of California Transportation Center.
    3. Ying Zhou & Hong Kim & Paul Schonfeld & Eungcheol Kim, 2008. "Subsidies and welfare maximization tradeoffs in bus transit systems," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(3), pages 643-660, September.
    4. Chandra, Shailesh & Quadrifoglio, Luca, 2013. "A model for estimating the optimal cycle length of demand responsive feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 1-16.
    5. Sivakumaran, Karthik & Li, Yuwei & Cassidy, Michael & Madanat, Samer, 2014. "Access and the choice of transit technology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 204-221.
    6. Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
    7. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    8. Han Zheng & Junhua Chen & Xingchen Zhang & Zixian Yang, 2019. "Designing a New Shuttle Service to Meet Large-Scale Instantaneous Peak Demands for Passenger Transportation in a Metropolitan Context: A Green, Low-Cost Mass Transport Option," Sustainability, MDPI, vol. 11(18), pages 1-28, September.
    9. Ouyang, Yanfeng & Nourbakhsh, Seyed Mohammad & Cassidy, Michael J., 2014. "Continuum approximation approach to bus network design under spatially heterogeneous demand," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 333-344.
    10. Chen, Haoyu & Gu, Weihua & Cassidy, Michael J. & Daganzo, Carlos F., 2015. "Optimal transit service atop ring-radial and grid street networks: A continuum approximation design method and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 755-774.
    11. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    12. Ouyang, Yanfeng, 2007. "Design of vehicle routing zones for large-scale distribution systems," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1079-1093, December.
    13. Baita, Flavio & Ukovich, Walter & Pesenti, Raffaele & Favaretto, Daniela, 1998. "Dynamic routing-and-inventory problems: a review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(8), pages 585-598, November.
    14. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:9:y:1975:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.