IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v45y2011i3p346-363.html
   My bibliography  Save this article

Constructive Heuristics for the Multicompartment Vehicle Routing Problem with Stochastic Demands

Author

Listed:
  • Jorge E. Mendoza

    (Équipe Optimisation des Systèmes de Production et Logistiques, LISA (EA CNRS 4094), Université Catholique de l'Ouest, 49008 Angers, France)

  • Bruno Castanier

    (Équipe Systèmes Logistiques et de Production, IRCCyN (UMR CNRS 6597), École des Mines de Nantes, 44307 Nantes Cedex 3, France)

  • Christelle Guéret

    (Équipe Systèmes Logistiques et de Production, IRCCyN (UMR CNRS 6597), École des Mines de Nantes, 44307 Nantes Cedex 3, France)

  • Andrés L. Medaglia

    (Centro para la Optimización y Probabilidad Aplicada (COPA), Departamento de Ingeniería Industrial, Universidad de los Andes, AA 4976 Bogotá, Colombia)

  • Nubia Velasco

    (Centro para la Optimización y Probabilidad Aplicada (COPA), Departamento de Ingeniería Industrial, Universidad de los Andes, AA 4976 Bogotá, Colombia)

Abstract

The vehicle routing problem with stochastic demands (VRPSD) consists of designing transportation routes of minimal expected cost to satisfy a set of customers with random demands of known probability distribution. This paper tackles a generalization of the VRPSD known as the multicompartment VRPSD (MC-VRPSD), a problem in which each customer demands several products that, because of incompatibility constraints, must be loaded in independent vehicle compartments. To solve the problem, we propose three simple and effective constructive heuristics based on a stochastic programming with recourse formulation. One of the heuristics is an extension to the multicompartment scenario of a savings-based algorithm for the VRPSD; the other two are different versions of a novel look-ahead heuristic that follows a route-first, cluster-second approach. In addition, to enhance the performance of the heuristics these are coupled with a post-optimization procedure based on the classical 2-Opt heuristic. The three algorithms were tested on instances of up to 200 customers from the MC-VRPSD and VRPSD literature. The proposed heuristics unveiled 26 and 12 new best known solutions for a set of 180 MC-VRPSD problems and a 40-instance testbed for the VRPSD, respectively.

Suggested Citation

  • Jorge E. Mendoza & Bruno Castanier & Christelle Guéret & Andrés L. Medaglia & Nubia Velasco, 2011. "Constructive Heuristics for the Multicompartment Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 45(3), pages 346-363, August.
  • Handle: RePEc:inm:ortrsc:v:45:y:2011:i:3:p:346-363
    DOI: 10.1287/trsc.1100.0353
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1100.0353
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1100.0353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    2. van der Bruggen, Lambert & Gruson, Ruud & Salomon, Marc, 1995. "Reconsidering the distribution structure of gasoline products for a large oil company," European Journal of Operational Research, Elsevier, vol. 81(3), pages 460-473, March.
    3. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    4. Dimitris J. Bertsimas, 1992. "A Vehicle Routing Problem with Stochastic Demand," Operations Research, INFORMS, vol. 40(3), pages 574-585, June.
    5. Walter Rei & Michel Gendreau & Patrick Soriano, 2010. "A Hybrid Monte Carlo Local Branching Algorithm for the Single Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 44(1), pages 136-146, February.
    6. Michel Gendreau & Gilbert Laporte & René Séguin, 1996. "A Tabu Search Heuristic for the Vehicle Routing Problem with Stochastic Demands and Customers," Operations Research, INFORMS, vol. 44(3), pages 469-477, June.
    7. Aykagan Ak & Alan L. Erera, 2007. "A Paired-Vehicle Recourse Strategy for the Vehicle-Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 41(2), pages 222-237, May.
    8. Gilbert Laporte & FranÇois V. Louveaux & Luc van Hamme, 2002. "An Integer L -Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 50(3), pages 415-423, June.
    9. Wen-Huei Yang & Kamlesh Mathur & Ronald H. Ballou, 2000. "Stochastic Vehicle Routing Problem with Restocking," Transportation Science, INFORMS, vol. 34(1), pages 99-112, February.
    10. Stefan Voßs & Andreas Fink & Cees Duin, 2005. "Looking Ahead with the Pilot Method," Annals of Operations Research, Springer, vol. 136(1), pages 285-302, April.
    11. Nicola Secomandi & François Margot, 2009. "Reoptimization Approaches for the Vehicle-Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 57(1), pages 214-230, February.
    12. Ruiz, Ruben & Maroto, Concepcion & Alcaraz, Javier, 2004. "A decision support system for a real vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 153(3), pages 593-606, March.
    13. Dror, Moshe & Trudeau, Pierre, 1986. "Stochastic vehicle routing with modified savings algorithm," European Journal of Operational Research, Elsevier, vol. 23(2), pages 228-235, February.
    14. Fink, Andreas & Vo[ss], Stefan, 2003. "Solving the continuous flow-shop scheduling problem by metaheuristics," European Journal of Operational Research, Elsevier, vol. 151(2), pages 400-414, December.
    15. Tatarakis, A. & Minis, I., 2009. "Stochastic single vehicle routing with a predefined customer sequence and multiple depot returns," European Journal of Operational Research, Elsevier, vol. 197(2), pages 557-571, September.
    16. J-F Cordeau & M Gendreau & G Laporte & J-Y Potvin & F Semet, 2002. "A guide to vehicle routing heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 512-522, May.
    17. Jon Jouis Bentley, 1992. "Fast Algorithms for Geometric Traveling Salesman Problems," INFORMS Journal on Computing, INFORMS, vol. 4(4), pages 387-411, November.
    18. A N Letchford & J Lysgaard & R W Eglese, 2007. "A branch-and-cut algorithm for the capacitated open vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1642-1651, December.
    19. Massimiliano Caramia & Francesca Guerriero, 2010. "A Milk Collection Problem with Incompatibility Constraints," Interfaces, INFORMS, vol. 40(2), pages 130-143, April.
    20. Tan, K.C. & Cheong, C.Y. & Goh, C.K., 2007. "Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation," European Journal of Operational Research, Elsevier, vol. 177(2), pages 813-839, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nasrin Asgari & Mohsen Rajabi & Masoumeh Jamshidi & Maryam Khatami & Reza Zanjirani Farahani, 2017. "A memetic algorithm for a multi-objective obnoxious waste location-routing problem: a case study," Annals of Operations Research, Springer, vol. 250(2), pages 279-308, March.
    2. Henke, Tino & Speranza, M. Grazia & Wäscher, Gerhard, 2015. "The multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 246(3), pages 730-743.
    3. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    4. Katrin Heßler, 2020. "Exact Algorithms for the Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes," Working Papers 2007, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Tino Henke & M. Grazia Speranza & Gerhard Wäscher, 2019. "A branch-and-cut algorithm for the multi-compartment vehicle routing problem with flexible compartment sizes," Annals of Operations Research, Springer, vol. 275(2), pages 321-338, April.
    6. Alexander Hübner & Manuel Ostermeier, 2019. "A Multi-Compartment Vehicle Routing Problem with Loading and Unloading Costs," Service Science, INFORMS, vol. 53(1), pages 282-300, February.
    7. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    8. Heßler, Katrin, 2021. "Exact algorithms for the multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 294(1), pages 188-205.
    9. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    10. Henriette Koch & Tino Henke & Gerhard Wäscher, 2016. "A Genetic Algorithm for the Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes," FEMM Working Papers 160004, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    11. Toni Greif & Nikolai Stein & Christoph M. Flath, 2023. "Information Value Analysis for Real-Time Silo Fill-Level Monitoring," Interfaces, INFORMS, vol. 53(4), pages 283-294, July.
    12. Alinaghian, Mahdi & Shokouhi, Nadia, 2018. "Multi-depot multi-compartment vehicle routing problem, solved by a hybrid adaptive large neighborhood search," Omega, Elsevier, vol. 76(C), pages 85-99.
    13. Markov, Iliya & Bierlaire, Michel & Cordeau, Jean-François & Maknoon, Yousef & Varone, Sacha, 2018. "A unified framework for rich routing problems with stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 213-240.
    14. Tino Henke & M. Grazia Speranza & Gerhard Wäscher, 2014. "The Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes," FEMM Working Papers 140006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    15. Ostermeier, Manuel & Hübner, Alexander, 2018. "Vehicle selection for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 269(2), pages 682-694.
    16. Jorge E. Mendoza & Louis-Martin Rousseau & Juan G. Villegas, 2016. "A hybrid metaheuristic for the vehicle routing problem with stochastic demand and duration constraints," Journal of Heuristics, Springer, vol. 22(4), pages 539-566, August.
    17. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    18. Goodson, Justin C., 2015. "A priori policy evaluation and cyclic-order-based simulated annealing for the multi-compartment vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 241(2), pages 361-369.
    19. Ostermeier, Manuel & Henke, Tino & Hübner, Alexander & Wäscher, Gerhard, 2021. "Multi-compartment vehicle routing problems: State-of-the-art, modeling framework and future directions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 799-817.
    20. Tino Henke & Grazia Speranza & Gerhard Wäscher, 2017. "A Branch-and-Cut Algorithm for the Multi Compartment vehicle Routing Problem with Flexbile Compartment Sizes," FEMM Working Papers 170004, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    2. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    3. Florent Hernandez & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A local branching matheuristic for the multi-vehicle routing problem with stochastic demands," Journal of Heuristics, Springer, vol. 25(2), pages 215-245, April.
    4. Luo, Zhixing & Qin, Hu & Zhang, Dezhi & Lim, Andrew, 2016. "Adaptive large neighborhood search heuristics for the vehicle routing problem with stochastic demands and weight-related cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 69-89.
    5. Prasanna Balaprakash & Mauro Birattari & Thomas Stützle & Marco Dorigo, 2015. "Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers," Computational Optimization and Applications, Springer, vol. 61(2), pages 463-487, June.
    6. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A hybrid recourse policy for the vehicle routing problem with stochastic demands," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 269-298, September.
    7. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A Rule-Based Recourse for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 53(5), pages 1334-1353, September.
    8. Bertazzi, Luca & Secomandi, Nicola, 2018. "Faster rollout search for the vehicle routing problem with stochastic demands and restocking," European Journal of Operational Research, Elsevier, vol. 270(2), pages 487-497.
    9. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    10. Benjamin Biesinger & Bin Hu & Günther R. Raidl, 2018. "A Genetic Algorithm in Combination with a Solution Archive for Solving the Generalized Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 52(3), pages 673-690, June.
    11. Chrysanthos E. Gounaris & Wolfram Wiesemann & Christodoulos A. Floudas, 2013. "The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty," Operations Research, INFORMS, vol. 61(3), pages 677-693, June.
    12. Florio, Alexandre M. & Hartl, Richard F. & Minner, Stefan, 2020. "Optimal a priori tour and restocking policy for the single-vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 285(1), pages 172-182.
    13. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2010. "The Vehicle Routing Problem with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 44(4), pages 474-492, November.
    14. Briseida Sarasola & Karl F. Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    15. Salavati-Khoshghalb, Majid & Gendreau, Michel & Jabali, Ola & Rei, Walter, 2019. "An exact algorithm to solve the vehicle routing problem with stochastic demands under an optimal restocking policy," European Journal of Operational Research, Elsevier, vol. 273(1), pages 175-189.
    16. Goodson, Justin C., 2015. "A priori policy evaluation and cyclic-order-based simulated annealing for the multi-compartment vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 241(2), pages 361-369.
    17. Jiang, J. & Ng, K.M. & Teo, K.M., 2016. "Satisficing measure approach for vehicle routing problem with time windows under uncertaintyAuthor-Name: Nguyen, V.A," European Journal of Operational Research, Elsevier, vol. 248(2), pages 404-414.
    18. Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    19. Beraldi, Patrizia & Bruni, Maria Elena & Laganà, Demetrio & Musmanno, Roberto, 2015. "The mixed capacitated general routing problem under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(2), pages 382-392.
    20. Zhang, Junlong & Lam, William H.K. & Chen, Bi Yu, 2016. "On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows," European Journal of Operational Research, Elsevier, vol. 249(1), pages 144-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:45:y:2011:i:3:p:346-363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.