IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v44y2010i4p442-454.html
   My bibliography  Save this article

A Dynamic Programming Heuristic for the Vehicle Routing Problem with Time Windows and European Community Social Legislation

Author

Listed:
  • A. L. Kok

    (Algorithmic R&D, ORTEC, 2800 AL Gouda, The Netherlands)

  • C. M. Meyer

    (Faculty of Business Studies and Economics, University of Bremen, 28359 Bremen, Germany)

  • H. Kopfer

    (Faculty of Business Studies and Economics, University of Bremen, 28359 Bremen, Germany)

  • J. M. J. Schutten

    (Operational Methods for Production and Logistics, University of Twente, 7500 AE Enschede, The Netherlands)

Abstract

In practice, apart from the problem of vehicle routing, schedulers also face the problem of finding feasible driver schedules complying with complex restrictions on drivers' driving and working hours. To address this complex interdependent problem of vehicle routing and break scheduling, we propose a restricted dynamic programming heuristic for the vehicle routing problem with time windows and the full European social legislation on drivers' driving and working hours. The problem we consider includes all rules in this legislation, whereas in the literature only a basic set of rules has been addressed. In addition to this basic set of rules, the legislation contains a set of modifications that allow for more flexibility. To include the legislation in the restricted dynamic programming heuristic, we propose a break scheduling heuristic. Computational results show that our method finds solutions to benchmark instances---which only consider the basic set of rules---with 18% fewer vehicles and 5% less travel distance than state-of-the-art approaches. Moreover, our results are obtained with significantly less computational effort. Furthermore, the results show that including a set of rules on drivers' working hours---which has been generally ignored in the literature---has a significant impact on the resulting vehicle schedules: 3.9% more vehicle routes and 1.0% more travel distances are needed. Finally, using the modified rules of the legislation leads to an additional reduction of 4% in the number of vehicles and of 1.5% in travel distances. Therefore, the modified rules should be exploited in practice.

Suggested Citation

  • A. L. Kok & C. M. Meyer & H. Kopfer & J. M. J. Schutten, 2010. "A Dynamic Programming Heuristic for the Vehicle Routing Problem with Time Windows and European Community Social Legislation," Transportation Science, INFORMS, vol. 44(4), pages 442-454, November.
  • Handle: RePEc:inm:ortrsc:v:44:y:2010:i:4:p:442-454
    DOI: 10.1287/trsc.1100.0331
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1100.0331
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1100.0331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Savelsbergh & Marc Sol, 1998. "Drive: Dynamic Routing of Independent Vehicles," Operations Research, INFORMS, vol. 46(4), pages 474-490, August.
    2. Malandraki, Chryssi & Dial, Robert B., 1996. "A restricted dynamic programming heuristic algorithm for the time dependent traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 90(1), pages 45-55, April.
    3. Ann Melissa Campbell & Martin Savelsbergh, 2004. "Efficient Insertion Heuristics for Vehicle Routing and Scheduling Problems," Transportation Science, INFORMS, vol. 38(3), pages 369-378, August.
    4. Asvin Goel, 2009. "Vehicle Scheduling and Routing with Drivers' Working Hours," Transportation Science, INFORMS, vol. 43(1), pages 17-26, February.
    5. Asvin Goel & Volker Gruhn, 2006. "Solving a Dynamic Real-Life Vehicle Routing Problem," Operations Research Proceedings, in: Hans-Dietrich Haasis & Herbert Kopfer & Jörn Schönberger (ed.), Operations Research Proceedings 2005, pages 367-372, Springer.
    6. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie-Eve Rancourt & Jean-François Cordeau & Gilbert Laporte, 2013. "Long-Haul Vehicle Routing and Scheduling with Working Hour Rules," Transportation Science, INFORMS, vol. 47(1), pages 81-107, February.
    2. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    3. Christian Tilk & Asvin Goel, 2019. "Bidirectional labeling for solving vehicle routing and truck driver scheduling problems," Working Papers 1914, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    4. Christian Tilk, 2016. "Branch-and-Price-and-Cut for the Vehicle Routing and Truck Driver Scheduling Problem," Working Papers 1616, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Tilk, Christian & Goel, Asvin, 2020. "Bidirectional labeling for solving vehicle routing and truck driver scheduling problems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 108-124.
    6. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    7. Zhang, Zizhen & Che, Oscar & Cheang, Brenda & Lim, Andrew & Qin, Hu, 2013. "A memetic algorithm for the multiperiod vehicle routing problem with profit," European Journal of Operational Research, Elsevier, vol. 229(3), pages 573-584.
    8. Eric Prescott-Gagnon & Guy Desaulniers & Michael Drexl & Louis-Martin Rousseau, 2010. "European Driver Rules in Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 44(4), pages 455-473, November.
    9. Asvin Goel, 2009. "Vehicle Scheduling and Routing with Drivers' Working Hours," Transportation Science, INFORMS, vol. 43(1), pages 17-26, February.
    10. Asvin Goel & Stefan Irnich, 2017. "An Exact Method for Vehicle Routing and Truck Driver Scheduling Problems," Transportation Science, INFORMS, vol. 51(2), pages 737-754, May.
    11. Daiane Maria Genaro Chiroli & Sérgio Fernando Mayerle & João Neiva Figueiredo, 2022. "Using state-space shortest-path heuristics to solve the long-haul point-to-point vehicle routing and driver scheduling problem subject to hours-of-service regulatory constraints," Journal of Heuristics, Springer, vol. 28(1), pages 23-59, February.
    12. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    13. Luo, Ying & Schonfeld, Paul, 2007. "A rejected-reinsertion heuristic for the static Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 736-755, August.
    14. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    15. İbrahim Muter & Ş. İlker Birbil & Güvenç Şahin, 2010. "Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 603-619, November.
    16. Mayerle, Sérgio Fernando & De Genaro Chiroli, Daiane Maria & Neiva de Figueiredo, João & Rodrigues, Hidelbrando Ferreira, 2020. "The long-haul full-load vehicle routing and truck driver scheduling problem with intermediate stops: An economic impact evaluation of Brazilian policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 36-51.
    17. Goel, Asvin, 2018. "Legal aspects in road transport optimization in Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 144-162.
    18. Agatz, N.A.H. & Fan, Y. & Stam, D.A., 2020. "Going green: the effect of green labels on delivery time slot choices," ERIM Report Series Research in Management ERS-2020-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Zhao, Jiamin & Dessouky, Maged, 2008. "Service capacity design problems for mobility allowance shuttle transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 135-146, February.
    20. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:44:y:2010:i:4:p:442-454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.