IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v35y2001i3p331-343.html
   My bibliography  Save this article

Multiobjective Metaheuristics for the Bus Driver Scheduling Problem

Author

Listed:
  • Helena R. Lourenço

    (Grup de Recerca en Logistica Empresarial, DEE, Universitat Pompeu Fabra, R. Trias Fargas 25-27, 08005 Barcelona, Spain)

  • José P. Paixão

    (DEIO, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal)

  • Rita Portugal

    (ICAT—FCUL, Universidade de Lisboa, Lisbon, Portugal)

Abstract

We present new multiobjective metaheuristics for solving real-world crew scheduling problems in public bus transport companies. Since the crews of these companies are drivers, we will designate the problem as bus-driver scheduling. Crew scheduling problems are well known, and several mathematical programming-based techniques have been proposed to solve them, in particular, using the single-objective set-covering formulation. However, in practice, there exists the need to consider multiple objectives, some of them in conflict with each other; for example, the cost and service quality, implying also that alternative solution methods have to be developed. We propose multiobjective metaheuristics based on the tabu search and genetic algorithms. These metaheuristics also present some innovation features related with the structure of the crew scheduling problem that guide the search efficiently and enable them to find good solutions. Some of these new features can also be applied to the development of heuristics to other combinatorial optimization problems. A summary of computational results with real-data problems is presented. The methods have been successfully incorporated in the GIST Planning Transportation Systems and are actually used by several companies.

Suggested Citation

  • Helena R. Lourenço & José P. Paixão & Rita Portugal, 2001. "Multiobjective Metaheuristics for the Bus Driver Scheduling Problem," Transportation Science, INFORMS, vol. 35(3), pages 331-343, August.
  • Handle: RePEc:inm:ortrsc:v:35:y:2001:i:3:p:331-343
    DOI: 10.1287/trsc.35.3.331.10147
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.35.3.331.10147
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.35.3.331.10147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charu C. Aggarwal & James B. Orlin & Ray P. Tai, 1997. "Optimized Crossover for the Independent Set Problem," Operations Research, INFORMS, vol. 45(2), pages 226-234, April.
    2. Paias, Ana & Paixao, J., 1993. "State space relaxation for set covering problems related to bus driver scheduling," European Journal of Operational Research, Elsevier, vol. 71(2), pages 303-316, December.
    3. Alberto Caprara & Matteo Fischetti & Paolo Toth, 1999. "A Heuristic Method for the Set Covering Problem," Operations Research, INFORMS, vol. 47(5), pages 730-743, October.
    4. Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
    5. Beasley, J. E., 1987. "An algorithm for set covering problem," European Journal of Operational Research, Elsevier, vol. 31(1), pages 85-93, July.
    6. Kevin W. Campbell & R. Bret Durfee & Gail S. Hines, 1997. "FedEx Generates Bid Lines Using Simulated Annealing," Interfaces, INFORMS, vol. 27(2), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perumal, Shyam S.G. & Larsen, Jesper & Lusby, Richard M. & Riis, Morten & Sørensen, Kasper S., 2019. "A matheuristic for the driver scheduling problem with staff cars," European Journal of Operational Research, Elsevier, vol. 275(1), pages 280-294.
    2. Martin Durbin & Karla Hoffman, 2008. "OR PRACTICE---The Dance of the Thirty-Ton Trucks: Dispatching and Scheduling in a Dynamic Environment," Operations Research, INFORMS, vol. 56(1), pages 3-19, February.
    3. Ciancio, Claudio & Laganà, Demetrio & Musmanno, Roberto & Santoro, Francesco, 2018. "An integrated algorithm for shift scheduling problems for local public transport companies," Omega, Elsevier, vol. 75(C), pages 139-153.
    4. Sebastián Genta & Juan Muñoz, 2007. "On assigning drivers for a home-delivery system on a performance basis," Annals of Operations Research, Springer, vol. 155(1), pages 107-117, November.
    5. F. Zeynep Sargut & Caner Altuntaş & Dilek Cetin Tulazoğlu, 2017. "Multi-objective integrated acyclic crew rostering and vehicle assignment problem in public bus transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1071-1096, October.
    6. Y. Wang (Ying) & Z. Shang (Zheming) & Huisman, D. & D'Ariano, A. & J.C. Zhang (Jinchuan), 2018. "A Lagrangian Relaxation Approach Based on a Time-Space-State Network for Railway Crew Scheduling," Econometric Institute Research Papers EI2018-45, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    2. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    3. Patrizia Beraldi & Andrzej Ruszczyński, 2002. "The Probabilistic Set-Covering Problem," Operations Research, INFORMS, vol. 50(6), pages 956-967, December.
    4. Naji-Azimi, Zahra & Toth, Paolo & Galli, Laura, 2010. "An electromagnetism metaheuristic for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 205(2), pages 290-300, September.
    5. Helena Ramalhinho-Lourenço, 2001. "The crew-scheduling module in the GIST system," Economics Working Papers 547, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Gao, Chao & Yao, Xin & Weise, Thomas & Li, Jinlong, 2015. "An efficient local search heuristic with row weighting for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 750-761.
    7. Helena Ramalhinho-Lourenço & José Pinto & Rita Portugal, 1998. "Metaheuristics for the bus-driver scheduling problem," Economics Working Papers 304, Department of Economics and Business, Universitat Pompeu Fabra.
    8. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    9. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    10. Torbjörn Larsson & Michael Patriksson, 2006. "Global Optimality Conditions for Discrete and Nonconvex Optimization---With Applications to Lagrangian Heuristics and Column Generation," Operations Research, INFORMS, vol. 54(3), pages 436-453, June.
    11. F J Vasko & P J Knolle & D S Spiegel, 2005. "An empirical study of hybrid genetic algorithms for the set covering problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1213-1223, October.
    12. Dimitris Bertsimas & Dan A. Iancu & Dmitriy Katz, 2013. "A New Local Search Algorithm for Binary Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 208-221, May.
    13. Grossman, Tal & Wool, Avishai, 1997. "Computational experience with approximation algorithms for the set covering problem," European Journal of Operational Research, Elsevier, vol. 101(1), pages 81-92, August.
    14. Cochran, Jeffery K. & Marquez Uribe, Alberto, 2005. "A set covering formulation for agile capacity planning within supply chains," International Journal of Production Economics, Elsevier, vol. 95(2), pages 139-149, February.
    15. Christian Prins & Caroline Prodhon & Roberto Calvo, 2006. "Two-phase method and Lagrangian relaxation to solve the Bi-Objective Set Covering Problem," Annals of Operations Research, Springer, vol. 147(1), pages 23-41, October.
    16. Victor Reyes & Ignacio Araya, 2021. "A GRASP-based scheme for the set covering problem," Operational Research, Springer, vol. 21(4), pages 2391-2408, December.
    17. Alberto Caprara & Matteo Fischetti & Paolo Toth, 1999. "A Heuristic Method for the Set Covering Problem," Operations Research, INFORMS, vol. 47(5), pages 730-743, October.
    18. Nguyen, Tri-Dung, 2014. "A fast approximation algorithm for solving the complete set packing problem," European Journal of Operational Research, Elsevier, vol. 237(1), pages 62-70.
    19. Chunyan Liu & Hejiao Huang & Hongwei Du & Xiaohua Jia, 2017. "Optimal RSUs placement with delay bounded message dissemination in vehicular networks," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1276-1299, May.
    20. Yagiura, Mutsunori & Kishida, Masahiro & Ibaraki, Toshihide, 2006. "A 3-flip neighborhood local search for the set covering problem," European Journal of Operational Research, Elsevier, vol. 172(2), pages 472-499, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:35:y:2001:i:3:p:331-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.