IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i6p1372-1387.html
   My bibliography  Save this article

Household-Level Economies of Scale in Transportation

Author

Listed:
  • John Gunnar Carlsson

    (Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California 90089)

  • Mehdi Behroozi

    (Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California 90089)

  • Raghuveer Devulapalli

    (Computational lithography group, Intel Corporation, Hillsboro, Oregon 97124)

  • Xiangfei Meng

    (Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California 90089)

Abstract

One of the fundamental concerns in the analysis of logistical systems is the trade-off between localized, independent provision of goods and services versus provision along a centralized infrastructure such as a backbone network. One phenomenon in which this trade-off has recently been made manifest is the transition of businesses from traditional brick-and-mortar stores to retail sales facilitated via e-commerce, such as grocery delivery services. Conventional wisdom would dictate that such services ought to be more efficient—say from the perspective of the overall carbon footprint—because of the economy of scale achieved by aggregating demand through a delivery van, as opposed to the many separate trips that customers would otherwise take using their own means of transport.In this paper, we quantify the changes in overall efficiency due to such services by looking at “household-level” economies of scale in transportation: a person might perform many errands in a day (such as going to the bank, grocery store, and post office), and that person has many choices of locations at which to perform these tasks (e.g., a typical metropolitan region has many banks, grocery stores, and post offices). Thus, the total driving distance (and therefore the overall carbon footprint) that that person traverses is the solution to a generalized travelling salesman problem (GTSP) in which they select both the best locations to visit and the sequence in which to visit them. We perform a probabilistic analysis of the GTSP under the assumption that all relevant locations are independently and identically distributed uniformly in a region and then determine the amount of adoption of such services that is necessary, under our model, in order for the overall carbon footprint of the region to decrease.

Suggested Citation

  • John Gunnar Carlsson & Mehdi Behroozi & Raghuveer Devulapalli & Xiangfei Meng, 2016. "Household-Level Economies of Scale in Transportation," Operations Research, INFORMS, vol. 64(6), pages 1372-1387, December.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:6:p:1372-1387
    DOI: 10.1287/opre.2016.1533
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2016.1533
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2016.1533?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jabali, Ola & Gendreau, Michel & Laporte, Gilbert, 2012. "A continuous approximation model for the fleet composition problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1591-1606.
    2. Adler, Thomas & Ben-Akiva, Moshe, 1979. "A theoretical and empirical model of trip chaining behavior," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 243-257, September.
    3. William P. Anderson & Lata Chatterjee & T.R. Lakshmanan, 2003. "E‐commerce, Transportation, and Economic Geography," Growth and Change, Wiley Blackwell, vol. 34(4), pages 415-432, September.
    4. David Hensher & April Reyes, 2000. "Trip chaining as a barrier to the propensity to use public transport," Transportation, Springer, vol. 27(4), pages 341-361, December.
    5. M. Haimovich & A. H. G. Rinnooy Kan, 1985. "Bounds and Heuristics for Capacitated Routing Problems," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 527-542, November.
    6. John Gunnar Carlsson & Fan Jia, 2013. "Euclidean Hub-and-Spoke Networks," Operations Research, INFORMS, vol. 61(6), pages 1360-1382, December.
    7. Carlos F. Daganzo, 2005. "Logistics Systems Analysis," Springer Books, Springer, edition 0, number 978-3-540-27516-9, December.
    8. Lawrence D. Burns & Randolph W. Hall & Dennis E. Blumenfeld & Carlos F. Daganzo, 1985. "Distribution Strategies that Minimize Transportation and Inventory Costs," Operations Research, INFORMS, vol. 33(3), pages 469-490, June.
    9. Kitamura, Ryuichi, 1984. "Incorporating trip chaining into analysis of destination choice," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 67-81, February.
    10. Patricia Mokhtarian, 2004. "A conceptual analysis of the transportation impacts of B2C e-commerce," Transportation, Springer, vol. 31(3), pages 257-284, August.
    11. Gérard P. Cachon, 2014. "Retail Store Density and the Cost of Greenhouse Gas Emissions," Management Science, INFORMS, vol. 60(8), pages 1907-1925, August.
    12. Huang, Michael & Smilowitz, Karen R. & Balcik, Burcu, 2013. "A continuous approximation approach for assessment routing in disaster relief," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 20-41.
    13. Charles E. Noon & James C. Bean, 1991. "A Lagrangian Based Approach for the Asymmetric Generalized Traveling Salesman Problem," Operations Research, INFORMS, vol. 39(4), pages 623-632, August.
    14. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    15. Ouyang, Yanfeng, 2007. "Design of vehicle routing zones for large-scale distribution systems," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1079-1093, December.
    16. Wygonik, Erica & Goodchild, Anne, 2012. "Evaluating the Efficacy of Shared-use Vehicles for Reducing Greenhouse Gas Emissions: A U.S. Case Study of Grocery Delivery," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 51(2).
    17. Dimitris J. Bertsimas & David Simchi-Levi, 1996. "A New Generation of Vehicle Routing Research: Robust Algorithms, Addressing Uncertainty," Operations Research, INFORMS, vol. 44(2), pages 286-304, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lagorio, Alexandra & Pinto, Roberto, 2021. "Food and grocery retail logistics issues: A systematic literature review," Research in Transportation Economics, Elsevier, vol. 87(C).
    2. Long He & Sheng Liu & Zuo‐Jun Max Shen, 2022. "Smart urban transport and logistics: A business analytics perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3771-3787, October.
    3. John Olsson & Daniel Hellström & Henrik Pålsson, 2019. "Framework of Last Mile Logistics Research: A Systematic Review of the Literature," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    4. Zhuzhu Song & Wansheng Tang & Ruiqing Zhao, 2022. "Implications of economies of scale and scope for round-trip shipping canvassing with empty container repositioning," Annals of Operations Research, Springer, vol. 309(2), pages 485-515, February.
    5. Kuang, Zhonghong & Lian, Zeng & Lien, Jaimie W. & Zheng, Jie, 2020. "Serial and parallel duopoly competition in multi-segment transportation routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    6. Wei Qi & Lefei Li & Sheng Liu & Zuo-Jun Max Shen, 2018. "Shared Mobility for Last-Mile Delivery: Design, Operational Prescriptions, and Environmental Impact," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 737-751, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    2. John Gunnar Carlsson & Siyuan Song, 2018. "Coordinated Logistics with a Truck and a Drone," Management Science, INFORMS, vol. 64(9), pages 4052-4069, September.
    3. Carlsson, John Gunnar & Behroozi, Mehdi, 2017. "Worst-case demand distributions in vehicle routing," European Journal of Operational Research, Elsevier, vol. 256(2), pages 462-472.
    4. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    5. Franceschetti, Anna & Honhon, Dorothée & Laporte, Gilbert & Woensel, Tom Van & Fransoo, Jan C., 2017. "Strategic fleet planning for city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 19-40.
    6. Huang, Michael & Smilowitz, Karen R. & Balcik, Burcu, 2013. "A continuous approximation approach for assessment routing in disaster relief," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 20-41.
    7. Wang, Xin & Lim, Michael K. & Ouyang, Yanfeng, 2015. "Infrastructure deployment under uncertainties and competition: The biofuel industry case," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 1-15.
    8. Wei Qi & Lefei Li & Sheng Liu & Zuo-Jun Max Shen, 2018. "Shared Mobility for Last-Mile Delivery: Design, Operational Prescriptions, and Environmental Impact," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 737-751, October.
    9. John Gunnar Carlsson & Fan Jia, 2013. "Euclidean Hub-and-Spoke Networks," Operations Research, INFORMS, vol. 61(6), pages 1360-1382, December.
    10. John Gunnar Carlsson & Fan Jia, 2015. "Continuous Facility Location with Backbone Network Costs," Transportation Science, INFORMS, vol. 49(3), pages 433-451, August.
    11. Ellegood, William A. & Campbell, James F. & North, Jeremy, 2015. "Continuous approximation models for mixed load school bus routing," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 182-198.
    12. Lei, Chao & Ouyang, Yanfeng, 2018. "Continuous approximation for demand balancing in solving large-scale one-commodity pickup and delivery problems," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 90-109.
    13. Michael Duncan, 2016. "How much can trip chaining reduce VMT? A simplified method," Transportation, Springer, vol. 43(4), pages 643-659, July.
    14. Yun Bai & Xiaopeng Li & Fan Peng & Xin Wang & Yanfeng Ouyang, 2015. "Effects of Disruption Risks on Biorefinery Location Design," Energies, MDPI, vol. 8(2), pages 1-19, February.
    15. Bouchery, Yann & Fransoo, Jan, 2015. "Cost, carbon emissions and modal shift in intermodal network design decisions," International Journal of Production Economics, Elsevier, vol. 164(C), pages 388-399.
    16. Y Bouchery & Jan C Fransoo, 2015. "Cost, carbon emissions and modal shift in intermodal network design decisions," Post-Print hal-01954452, HAL.
    17. Bahrami, Sina & Nourinejad, Mehdi & Yin, Yafeng & Wang, Hai, 2023. "The three-sided market of on-demand delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    18. Baller, Annelieke C. & Dabia, Said & Dullaert, Wout E.H. & Vigo, Daniele, 2019. "The Dynamic-Demand Joint Replenishment Problem with Approximated Transportation Costs," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1013-1033.
    19. Campbell, James F., 2013. "A continuous approximation model for time definite many-to-many transportation," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 100-112.
    20. Garling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1991. "Computational-Process Modelling of Travel Decisions: Review and Conceptual Analysis," University of California Transportation Center, Working Papers qt6mk0h2s2, University of California Transportation Center.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:6:p:1372-1387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.