IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v56y2008i5p1172-1183.html
   My bibliography  Save this article

Polynomial-Time Algorithms for Stochastic Uncapacitated Lot-Sizing Problems

Author

Listed:
  • Yongpei Guan

    (School of Industrial Engineering, University of Oklahoma, Norman, Oklahoma 73019)

  • Andrew J. Miller

    (Department of Industrial and Systems Engineering, University of Wisconsin, Madison, Wisconsin 53706)

Abstract

In 1958, Wagner and Whitin published a seminal paper on the deterministic uncapacitated lot-sizing problem, a fundamental model that is embedded in many practical production planning problems. In this paper, we consider a basic version of this model in which problem parameters are stochastic: the stochastic uncapacitated lot-sizing problem. We define the production-path property of an optimal solution for our model and use this property to develop a backward dynamic programming recursion. This approach allows us to show that the value function is piecewise linear and right continuous. We then use these results to show that a full characterization of the optimal value function can be obtained by a dynamic programming algorithm in polynomial time for the case that each nonleaf node contains at least two children. Moreover, we show that our approach leads to a polynomial-time algorithm to obtain an optimal solution to any instance of the stochastic uncapacitated lot-sizing problem, regardless of the structure of the scenario tree. We also show that the value function for the problem without setup costs is continuous, piecewise linear, and convex, and therefore an even more efficient dynamic programming algorithm can be developed for this special case.

Suggested Citation

  • Yongpei Guan & Andrew J. Miller, 2008. "Polynomial-Time Algorithms for Stochastic Uncapacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 56(5), pages 1172-1183, October.
  • Handle: RePEc:inm:oropre:v:56:y:2008:i:5:p:1172-1183
    DOI: 10.1287/opre.1070.0479
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1070.0479
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1070.0479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gary D. Eppen & R. Kipp Martin, 1987. "Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition," Operations Research, INFORMS, vol. 35(6), pages 832-848, December.
    2. Stadtler, Hartmut, 2003. "Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 20204, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. S. M. Johnson, 1957. "Sequential Production Planning Over Time at Minimum Cost," Management Science, INFORMS, vol. 3(4), pages 435-437, July.
    4. DI SUMMA, Marco & WOLSEY, Laurence A., 2006. "Lot-sizing on a tree," LIDAM Discussion Papers CORE 2006044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Albert Wagelmans & Stan van Hoesel & Antoon Kolen, 1992. "Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case," Operations Research, INFORMS, vol. 40(1-supplem), pages 145-156, February.
    6. BELVAUX, Gaetan & WOLSEY, Laurence A., 2001. "Modelling practical lot-sizing problems as mixed-integer programs," LIDAM Reprints CORE 1516, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Michael Florian & Morton Klein, 1971. "Deterministic Production Planning with Concave Costs and Capacity Constraints," Management Science, INFORMS, vol. 18(1), pages 12-20, September.
    8. Guglielmo Lulli & Suvrajeet Sen, 2004. "A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems," Management Science, INFORMS, vol. 50(6), pages 786-796, June.
    9. BELVAUX, Gaëtan & WOLSEY, Laurence A., 2000. "bc-prod: A specialized branch-and-cut system for lot-sizing problems," LIDAM Reprints CORE 1455, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Katerina P. Papadaki & Warren B. Powell, 2003. "An adaptive dynamic programming algorithm for a stochastic multiproduct batch dispatch problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 742-769, October.
    11. Hartmut Stadtler, 2003. "Multilevel Lot Sizing with Setup Times and Multiple Constrained Resources: Internally Rolling Schedules with Lot-Sizing Windows," Operations Research, INFORMS, vol. 51(3), pages 487-502, June.
    12. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    13. Horst Tempelmeier & Matthias Derstroff, 1996. "A Lagrangean-Based Heuristic for Dynamic Multilevel Multiitem Constrained Lotsizing with Setup Times," Management Science, INFORMS, vol. 42(5), pages 738-757, May.
    14. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    15. Pochet, Y. & Wolsey, L. A., 1994. "Polyhedra for lot-sizing with Wagner-Whitin costs," LIDAM Reprints CORE 1129, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Gaetan Belvaux & Laurence A. Wolsey, 2001. "Modelling Practical Lot-Sizing Problems as Mixed-Integer Programs," Management Science, INFORMS, vol. 47(7), pages 993-1007, July.
    17. Huseyin Topaloglu & Warren B. Powell, 2006. "Dynamic-Programming Approximations for Stochastic Time-Staged Integer Multicommodity-Flow Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 31-42, February.
    18. Gaetan Belvaux & Laurence A. Wolsey, 2000. "bc --- prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems," Management Science, INFORMS, vol. 46(5), pages 724-738, May.
    19. Shabbir Ahmed & Nikolaos V. Sahinidis, 2003. "An Approximation Scheme for Stochastic Integer Programs Arising in Capacity Expansion," Operations Research, INFORMS, vol. 51(3), pages 461-471, June.
    20. Awi Federgruen & Michal Tzur, 1993. "The dynamic lot‐sizing model with backlogging: A simple o(n log n) algorithm and minimal forecast horizon procedure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(4), pages 459-478, June.
    21. Papadaki, Katerina P. & Powell, Warren B., 2002. "Exploiting structure in adaptive dynamic programming algorithms for a stochastic batch service problem," European Journal of Operational Research, Elsevier, vol. 142(1), pages 108-127, October.
    22. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    23. Alok Aggarwal & James K. Park, 1993. "Improved Algorithms for Economic Lot Size Problems," Operations Research, INFORMS, vol. 41(3), pages 549-571, June.
    24. Chung-Yee Lee & Sila Çetinkaya & Albert P. M. Wagelmans, 2001. "A Dynamic Lot-Sizing Model with Demand Time Windows," Management Science, INFORMS, vol. 47(10), pages 1384-1395, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guan, Yongpei & Liu, Tieming, 2010. "Stochastic lot-sizing problem with inventory-bounds and constant order-capacities," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1398-1409, December.
    2. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    3. Hnaien, Faicel & Afsar, Hasan Murat, 2017. "Robust single-item lot-sizing problems with discrete-scenario lead time," International Journal of Production Economics, Elsevier, vol. 185(C), pages 223-229.
    4. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    5. Attila, Öykü Naz & Agra, Agostinho & Akartunalı, Kerem & Arulselvan, Ashwin, 2021. "Robust formulations for economic lot-sizing problem with remanufacturing," European Journal of Operational Research, Elsevier, vol. 288(2), pages 496-510.
    6. Hao Yuan & Qi Luo & Cong Shi, 2021. "Marrying Stochastic Gradient Descent with Bandits: Learning Algorithms for Inventory Systems with Fixed Costs," Management Science, INFORMS, vol. 67(10), pages 6089-6115, October.
    7. Zhili Zhou & Yongpei Guan, 2013. "Two-stage stochastic lot-sizing problem under cost uncertainty," Annals of Operations Research, Springer, vol. 209(1), pages 207-230, October.
    8. Franco Quezada & Céline Gicquel & Safia Kedad-Sidhoum, 2022. "Combining Polyhedral Approaches and Stochastic Dual Dynamic Integer Programming for Solving the Uncapacitated Lot-Sizing Problem Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1024-1041, March.
    9. Akartunalı, Kerem & Dauzère-Pérès, Stéphane, 2022. "Dynamic lot sizing with stochastic demand timing," European Journal of Operational Research, Elsevier, vol. 302(1), pages 221-229.
    10. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    11. Yongpei Guan, 2011. "Stochastic lot-sizing with backlogging: computational complexity analysis," Journal of Global Optimization, Springer, vol. 49(4), pages 651-678, April.
    12. Cong Shi & Huanan Zhang & Xiuli Chao & Retsef Levi, 2014. "Approximation algorithms for capacitated stochastic inventory systems with setup costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(4), pages 304-319, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AkartunalI, Kerem & Miller, Andrew J., 2009. "A heuristic approach for big bucket multi-level production planning problems," European Journal of Operational Research, Elsevier, vol. 193(2), pages 396-411, March.
    2. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    3. Kerem Akartunalı & Andrew Miller, 2012. "A computational analysis of lower bounds for big bucket production planning problems," Computational Optimization and Applications, Springer, vol. 53(3), pages 729-753, December.
    4. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    5. Yongpei Guan, 2011. "Stochastic lot-sizing with backlogging: computational complexity analysis," Journal of Global Optimization, Springer, vol. 49(4), pages 651-678, April.
    6. Laurence A. Wolsey, 2002. "Solving Multi-Item Lot-Sizing Problems with an MIP Solver Using Classification and Reformulation," Management Science, INFORMS, vol. 48(12), pages 1587-1602, December.
    7. Kerem Akartunalı & Ioannis Fragkos & Andrew J. Miller & Tao Wu, 2016. "Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 766-780, November.
    8. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    9. Alper Atamtürk & Simge Küçükyavuz, 2005. "Lot Sizing with Inventory Bounds and Fixed Costs: Polyhedral Study and Computation," Operations Research, INFORMS, vol. 53(4), pages 711-730, August.
    10. Minjiao Zhang & Simge Küçükyavuz & Hande Yaman, 2012. "A Polyhedral Study of Multiechelon Lot Sizing with Intermediate Demands," Operations Research, INFORMS, vol. 60(4), pages 918-935, August.
    11. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    12. Eksioglu, Sandra Duni, 2009. "A primal-dual algorithm for the economic lot-sizing problem with multi-mode replenishment," European Journal of Operational Research, Elsevier, vol. 197(1), pages 93-101, August.
    13. Atamturk, Alper & Munoz, Juan Carlos, 2002. "A Study of the Lot-Sizing Polytope," University of California Transportation Center, Working Papers qt6zz2g0z4, University of California Transportation Center.
    14. Francesco Gaglioppa & Lisa A. Miller & Saif Benjaafar, 2008. "Multitask and Multistage Production Planning and Scheduling for Process Industries," Operations Research, INFORMS, vol. 56(4), pages 1010-1025, August.
    15. Chen, Haoxun, 2015. "Fix-and-optimize and variable neighborhood search approaches for multi-level capacitated lot sizing problems," Omega, Elsevier, vol. 56(C), pages 25-36.
    16. Degraeve, Z. & Jans, R.F., 2003. "A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Zeger Degraeve & Raf Jans, 2007. "A New Dantzig-Wolfe Reformulation and Branch-and-Price Algorithm for the Capacitated Lot-Sizing Problem with Setup Times," Operations Research, INFORMS, vol. 55(5), pages 909-920, October.
    18. Atamturk, Alper & Munoz, Juan Carlos, 2002. "A Study of the Lot-Sizing Polytope," University of California Transportation Center, Working Papers qt9gx170tx, University of California Transportation Center.
    19. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    20. Tao Wu & Leyuan Shi & Joseph Geunes & Kerem Akartunalı, 2012. "On the equivalence of strong formulations for capacitated multi-level lot sizing problems with setup times," Journal of Global Optimization, Springer, vol. 53(4), pages 615-639, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:56:y:2008:i:5:p:1172-1183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.