IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v51y2003i6p850-865.html
   My bibliography  Save this article

The Linear Programming Approach to Approximate Dynamic Programming

Author

Listed:
  • D. P. de Farias

    (Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • B. Van Roy

    (Department of Management Science and Engineering, Stanford University, Stanford, California 94306)

Abstract

The curse of dimensionality gives rise to prohibitive computational requirements that render infeasible the exact solution of large-scale stochastic control problems. We study an efficient method based on linear programming for approximating solutions to such problems. The approach “fits” a linear combination of pre-selected basis functions to the dynamic programming cost-to-go function. We develop error bounds that offer performance guarantees and also guide the selection of both basis functions and “state-relevance weights” that influence quality of the approximation. Experimental results in the domain of queueing network control provide empirical support for the methodology.

Suggested Citation

  • D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
  • Handle: RePEc:inm:oropre:v:51:y:2003:i:6:p:850-865
    DOI: 10.1287/opre.51.6.850.24925
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.51.6.850.24925
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.51.6.850.24925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Eric V. Denardo, 1970. "On Linear Programming in a Markov Decision Problem," Management Science, INFORMS, vol. 16(5), pages 281-288, January.
    3. Victoria C. P. Chen & David Ruppert & Christine A. Shoemaker, 1999. "Applying Experimental Design and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming," Operations Research, INFORMS, vol. 47(1), pages 38-53, February.
    4. Alan S. Manne, 1960. "Linear Programming and Sequential Decisions," Management Science, INFORMS, vol. 6(3), pages 259-267, April.
    5. A. Hordijk & L. C. M. Kallenberg, 1979. "Linear Programming and Markov Decision Chains," Management Science, INFORMS, vol. 25(4), pages 352-362, April.
    6. J. R. Morrison & P. R. Kumar, 1999. "New Linear Program Performance Bounds for Queueing Networks," Journal of Optimization Theory and Applications, Springer, vol. 100(3), pages 575-597, March.
    7. D. P. De Farias & B. Van Roy, 2000. "On the Existence of Fixed Points for Approximate Value Iteration and Temporal-Difference Learning," Journal of Optimization Theory and Applications, Springer, vol. 105(3), pages 589-608, June.
    8. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    9. Trick, Michael A. & Zin, Stanley E., 1997. "Spline Approximations To Value Functions," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 255-277, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selvaprabu Nadarajah & François Margot & Nicola Secomandi, 2015. "Relaxations of Approximate Linear Programs for the Real Option Management of Commodity Storage," Management Science, INFORMS, vol. 61(12), pages 3054-3076, December.
    2. Lodewijk Kallenberg, 2013. "Derman’s book as inspiration: some results on LP for MDPs," Annals of Operations Research, Springer, vol. 208(1), pages 63-94, September.
    3. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Pathwise Optimization for Optimal Stopping Problems," Management Science, INFORMS, vol. 58(12), pages 2292-2308, December.
    4. B. Curtis Eaves & Arthur F. Veinott, 2014. "Maximum-Stopping-Value Policies in Finite Markov Population Decision Chains," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 597-606, August.
    5. Michael O’Sullivan & Arthur F. Veinott, Jr., 2017. "Polynomial-Time Computation of Strong and n -Present-Value Optimal Policies in Markov Decision Chains," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 577-598, August.
    6. Dmitry Krass & O. J. Vrieze, 2002. "Achieving Target State-Action Frequencies in Multichain Average-Reward Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 545-566, August.
    7. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    8. Guillot, Matthieu & Stauffer, Gautier, 2020. "The Stochastic Shortest Path Problem: A polyhedral combinatorics perspective," European Journal of Operational Research, Elsevier, vol. 285(1), pages 148-158.
    9. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    10. Work, James & Hauer, Grant & Luckert, M.K. (Marty), 2018. "What ethanol prices would induce growers to switch from agriculture to poplar in Alberta? A multiple options approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 51-62.
    11. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    12. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    13. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    14. Marta Biancardi & Giovanni Villani, 2017. "Robust Monte Carlo Method for R&D Real Options Valuation," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 481-498, March.
    15. Gabriel J Power & Charli D. Tandja M. & Josée Bastien & Philippe Grégoire, 2015. "Measuring infrastructure investment option value," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 49-72, January.
    16. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    17. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    18. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    19. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    20. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Longevity risk in portfolios of pension annuities," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 505-519, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:51:y:2003:i:6:p:850-865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.