IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v38y1990i4p644-655.html
   My bibliography  Save this article

A Dynamic Lot Sizing Model with Learning in Setups

Author

Listed:
  • Suresh Chand

    (Purdue University, West Lafayette, Indiana)

  • Suresh P. Sethi

    (University of Toronto, Toronto, Canada)

Abstract

This paper considers the dynamic lot sizing problem of H. M. Wagner and T. M. Whitin with the assumption that the total cost of n setups is a concave nondecreasing function of n . Such setup costs could arise from the worker learning in setups and/or technological improvements in setup methods. An efficient dynamic programming algorithm is developed to solve a finite horizon problem and results are presented to find decision/forecast horizons. Several new results presented in the paper have potential use in solving other related problems.

Suggested Citation

  • Suresh Chand & Suresh P. Sethi, 1990. "A Dynamic Lot Sizing Model with Learning in Setups," Operations Research, INFORMS, vol. 38(4), pages 644-655, August.
  • Handle: RePEc:inm:oropre:v:38:y:1990:i:4:p:644-655
    DOI: 10.1287/opre.38.4.644
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.38.4.644
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.38.4.644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Voros, Jozsef, 1995. "Setup cost stability region for the multi-level dynamic lot sizing problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 132-141, November.
    2. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Trappey, Amy J.C. & Trappey, Charles V. & Liu, Penny H.Y. & Lin, Lee-Cheng & Ou, Jerry J.R., 2013. "A hierarchical cost learning model for developing wind energy infrastructures," International Journal of Production Economics, Elsevier, vol. 146(2), pages 386-391.
    4. Suresh Chand & Tim McClurg & Jim Ward, 1993. "A single‐machine replacement model with learning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(2), pages 175-192, March.
    5. Mazzola, Joseph B. & Neebe, Alan W. & Rump, Christopher M., 1998. "Multiproduct production planning in the presence of work-force learning," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 336-356, April.
    6. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Impact of emission regulation policies on Chinese power firms’ reusable environmental investments and sustainable operations," Energy Policy, Elsevier, vol. 108(C), pages 163-177.
    7. Kavindra Malik & Yufei Wang, 1993. "An improved algorithm for the dynamic lot‐sizing problem with learning effect in setups," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 925-931, December.
    8. Li, Georgi & Rajagopalan, S., 1998. "A learning curve model with knowledge depreciation," European Journal of Operational Research, Elsevier, vol. 105(1), pages 143-154, February.
    9. Hoesel, C. P. M. Van & Wagelmans, A. P. M., 2000. "Parametric analysis of setup cost in the economic lot-sizing model without speculative motives," International Journal of Production Economics, Elsevier, vol. 66(1), pages 13-22, June.
    10. Vernon Ning Hsu, 2000. "Dynamic Economic Lot Size Model with Perishable Inventory," Management Science, INFORMS, vol. 46(8), pages 1159-1169, August.
    11. Awi Federgruen & Michal Tzur, 1996. "Detection of minimal forecast horizons in dynamic programs with multiple indicators of the future," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 169-189, March.
    12. Chiu, Huan Neng & Chen, Hsin Min, 2005. "An optimal algorithm for solving the dynamic lot-sizing model with learning and forgetting in setups and production," International Journal of Production Economics, Elsevier, vol. 95(2), pages 179-193, February.
    13. Voros, Jozsef, 2002. "On the relaxation of multi-level dynamic lot-sizing models," International Journal of Production Economics, Elsevier, vol. 77(1), pages 53-61, May.
    14. Chung-Lun Li & Vernon Ning Hsu & Wen-Qiang Xiao, 2004. "Dynamic Lot Sizing with Batch Ordering and Truckload Discounts," Operations Research, INFORMS, vol. 52(4), pages 639-654, August.
    15. Sunantha Teyarachakul & Suresh Chand & Michal Tzur, 2016. "Lot sizing with learning and forgetting in setups: Analytical results and insights," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 93-108, March.
    16. Diaby, Moustapha, 1995. "Optimal setup time reduction for a single product with dynamic demands," European Journal of Operational Research, Elsevier, vol. 85(3), pages 532-540, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:38:y:1990:i:4:p:644-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.