IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v66y2020i8p3425-3443.html
   My bibliography  Save this article

Bridging Academia and Industry: How Geographic Hubs Connect University Science and Corporate Technology

Author

Listed:
  • Michaël Bikard

    (Strategy, INSEAD, Fontainebleau, 77300 Île-de-France, France)

  • Matt Marx

    (Strategy and Innovation, Questrom School of Business, Boston University, Boston, Massachusetts 02215)

Abstract

Innovative firms rely increasingly on academic science, yet they exploit only a small fraction of all academic discoveries. Which discoveries in academia do firms build upon? We posit that hubs play the role of bridges between academic science and corporate technology. Tracking citations from patents to approximately 10 million academic articles, we find that hubs facilitate the flow of academic science into corporate inventions in two ways. First, hub-based discoveries in academia are of higher quality and are more applied. Second, firms—in particular young, innovative, science-oriented ones—pay disproportionate attention to hub-based discoveries. We address concerns regarding unobserved heterogeneity by confirming the role of firms’ attention to hub-based science in a set of 147 simultaneous discoveries. Importantly, hubs not only facilitate localized knowledge flow but also extend the geographic reach of academic science, attracting the attention of distant firms.

Suggested Citation

  • Michaël Bikard & Matt Marx, 2020. "Bridging Academia and Industry: How Geographic Hubs Connect University Science and Corporate Technology," Management Science, INFORMS, vol. 66(8), pages 3425-3443, August.
  • Handle: RePEc:inm:ormnsc:v:66:y:2020:i:8:p:3425-3443
    DOI: 10.1287/mnsc.2019.3385
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2019.3385
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2019.3385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin F. Jones, 2009. "The Burden of Knowledge and the "Death of the Renaissance Man": Is Innovation Getting Harder?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 283-317.
    2. Jasjit Singh & Matt Marx, 2013. "Geographic Constraints on Knowledge Spillovers: Political Borders vs. Spatial Proximity," Management Science, INFORMS, vol. 59(9), pages 2056-2078, September.
    3. Jeff S. Armstrong & Michael R. Darby & Lynne G. Zucker, 2003. "Commercializing knowledge: university science, knowledge capture and firm performance in biotechnology," Proceedings, Federal Reserve Bank of Dallas, issue Sep, pages 149-170.
    4. Michaël Bikard, 2018. "Made in Academia: The Effect of Institutional Origin on Inventors’ Attention to Science," Organization Science, INFORMS, vol. 29(5), pages 818-836, October.
    5. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    6. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    7. Ajay Agrawal & Avi Goldfarb & Florenta Teodoridis, 2016. "Understanding the Changing Structure of Scientific Inquiry," American Economic Journal: Applied Economics, American Economic Association, vol. 8(1), pages 100-128, January.
    8. Sharon Belenzon & Mark Schankerman, 2013. "Spreading the Word: Geography, Policy, and Knowledge Spillovers," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 884-903, July.
    9. Michelle Gittelman, 2007. "Does Geography Matter for Science-Based Firms? Epistemic Communities and the Geography of Research and Patenting in Biotechnology," Organization Science, INFORMS, vol. 18(4), pages 724-741, August.
    10. Riccardo Fini & Einar Rasmussen & Johan Wiklund & Mike Wright, 2019. "Theories from the Lab: How Research on Science Commercialization can Contribute to Management Studies," Journal of Management Studies, Wiley Blackwell, vol. 56(5), pages 865-894, July.
    11. C. Glenn Begley & Lee M. Ellis, 2012. "Raise standards for preclinical cancer research," Nature, Nature, vol. 483(7391), pages 531-533, March.
    12. Jasjit Singh, 2005. "Collaborative Networks as Determinants of Knowledge Diffusion Patterns," Management Science, INFORMS, vol. 51(5), pages 756-770, May.
    13. Leonard P Freedman & Iain M Cockburn & Timothy S Simcoe, 2015. "The Economics of Reproducibility in Preclinical Research," PLOS Biology, Public Library of Science, vol. 13(6), pages 1-9, June.
    14. Juan Alcácer & Wilbur Chung, 2007. "Location Strategies and Knowledge Spillovers," Management Science, INFORMS, vol. 53(5), pages 760-776, May.
    15. Jan Bena & Kai Li, 2014. "Corporate Innovations and Mergers and Acquisitions," Journal of Finance, American Finance Association, vol. 69(5), pages 1923-1960, October.
    16. William Ocasio, 1997. "Towards An Attention‐Based View Of The Firm," Strategic Management Journal, Wiley Blackwell, vol. 18(S1), pages 187-206, July.
    17. Arora, Ashish & Gambardella, Alfonso, 1994. "The changing technology of technological change: general and abstract knowledge and the division of innovative labour," Research Policy, Elsevier, vol. 23(5), pages 523-532, September.
    18. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    19. Michael Roach & Wesley M. Cohen, 2013. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," Management Science, INFORMS, vol. 59(2), pages 504-525, October.
    20. Ashish Arora & Sharon Belenzon & Andrea Patacconi, 2018. "The decline of science in corporate R&D," Strategic Management Journal, Wiley Blackwell, vol. 39(1), pages 3-32, January.
    21. Eric von Hippel, 1994. ""Sticky Information" and the Locus of Problem Solving: Implications for Innovation," Management Science, INFORMS, vol. 40(4), pages 429-439, April.
    22. Alessandro Iaria & Carlo Schwarz & Fabian Waldinger, 2018. "Frontier Knowledge and Scientific Production: Evidence from the Collapse of International Science," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 927-991.
    23. Chai, Sen & Menon, Anoop, 2019. "Breakthrough recognition: Bias against novelty and competition for attention," Research Policy, Elsevier, vol. 48(3), pages 733-747.
    24. Henrekson, Magnus & Rosenberg, Nathan, 2001. "Designing Efficient Institutions for Science-Based Entrepreneurship: Lessons from the US and Sweden," The Journal of Technology Transfer, Springer, vol. 26(3), pages 207-231, June.
    25. Bruno Cassiman & Reinhilde Veugelers & Pluvia Zuniga, 2008. "In search of performance effects of (in)direct industry science links," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(4), pages 611-646, August.
    26. Rosenberg, Nathan & Nelson, Richard R., 1994. "American universities and technical advance in industry," Research Policy, Elsevier, vol. 23(3), pages 323-348, May.
    27. Jeffrey L. Furman & Megan MacGarvie, 2007. "Academic Science and the Birth of Industrial Research Laboratories in the U.S. Pharmaceutical Industry," NBER Chapters, in: Academic Science and Entrepreneurship: Dual Engines of Growth, National Bureau of Economic Research, Inc.
    28. Richard R. Nelson, 1982. "The Role of Knowledge in R&D Efficiency," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 97(3), pages 453-470.
    29. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    30. Scott Stern, 2004. "Do Scientists Pay to Be Scientists?," Management Science, INFORMS, vol. 50(6), pages 835-853, June.
    31. Drivas, Kyriakos & Lei, Zhen & Wright, Brian D., 2017. "Academic patent licenses: Roadblocks or signposts for nonlicensee cumulative innovation?," Journal of Economic Behavior & Organization, Elsevier, vol. 137(C), pages 282-303.
    32. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.
    33. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    34. Ezra W. Zuckerman & Tai-Young Kim, 2003. "The critical trade-off: identity assignment and box-office success in the feature film industry," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 12(1), pages 27-67, February.
    35. Chai, Sen & Shih, Willy, 2016. "Bridging science and technology through academic–industry partnerships," Research Policy, Elsevier, vol. 45(1), pages 148-158.
    36. Julie Callaert & Maikel Pellens & Bart Looy, 2014. "Sources of inspiration? Making sense of scientific references in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1617-1629, March.
    37. Ajay Agrawal & Rebecca Henderson, 2002. "Putting Patents in Context: Exploring Knowledge Transfer from MIT," Management Science, INFORMS, vol. 48(1), pages 44-60, January.
    38. Timothy S. Simcoe & Dave M. Waguespack, 2011. "Status, Quality, and Attention: What's in a (Missing) Name?," Management Science, INFORMS, vol. 57(2), pages 274-290, February.
    39. Zucker, Lynne G & Darby, Michael R & Brewer, Marilynn B, 1998. "Intellectual Human Capital and the Birth of U.S. Biotechnology Enterprises," American Economic Review, American Economic Association, vol. 88(1), pages 290-306, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balland, Pierre-Alexandre & Boschma, Ron, 2022. "Do scientific capabilities in specific domains matter for technological diversification in European regions?," Research Policy, Elsevier, vol. 51(10).
    2. Arora, Ashish & Belenzon, Sharon & Dionisi, Bernardo, 2023. "First-mover advantage and the private value of public science," Research Policy, Elsevier, vol. 52(9).
    3. Isabel Cavalli & Charlie Joyez, 2021. "The Dynamics of French Universities in Patent Collaboration Networks," GREDEG Working Papers 2021-38, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    4. Chen, Kaihua & Zhang, Chao & Feng, Ze & Zhang, Yi & Ning, Lutao, 2022. "Technology transfer systems and modes of national research institutes: evidence from the Chinese academy of sciences," Research Policy, Elsevier, vol. 51(3).
    5. Yitong Chen & Keye Wu & Yue Li & Jianjun Sun, 2023. "Impacts of inter-institutional mobility on scientific performance from research capital and social capital perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3473-3506, June.
    6. Wernsdorf, Kathrin & Nagler, Markus & Watzinger, Martin, 2022. "ICT, collaboration, and innovation: Evidence from BITNET," Journal of Public Economics, Elsevier, vol. 211(C).
    7. Su Jung Jee & So Young Sohn, 2023. "A firm’s creation of proprietary knowledge linked to the knowledge spilled over from its research publications: the case of artificial intelligence," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 32(4), pages 876-900.
    8. Zhang, Yi & Chen, Kaihua, 2022. "Network growth dynamics: The simultaneous interaction between network positions and research performance of collaborative organisations," Technovation, Elsevier, vol. 115(C).
    9. Kathrin Wernsdorf & Markus Nagler & Martin Watzinger, 2020. "ICT, Collaboration, and Science-Based Innovation: Evidence from BITNET," CESifo Working Paper Series 8646, CESifo.
    10. Abhishek Nagaraj, 2022. "T he P rivate I mpact of P ublic D ata: L andsat S atellite M aps I ncreased G old D iscoveries and E ncouraged E ntry," Management Science, INFORMS, vol. 68(1), pages 564-582, January.
    11. Cappelli, Riccardo & Corsino, Marco & Laursen, Keld & Torrisi, Salvatore, 2023. "Technological competition and patent strategy: Protecting innovation, preempting rivals and defending the freedom to operate," Research Policy, Elsevier, vol. 52(6).
    12. Wang, Qinyu Ryan & Zheng, Yanfeng, 2023. "Patent regime and the geography of cumulative innovation," Research Policy, Elsevier, vol. 52(7).
    13. Nasirov, Shukhrat & Joshi, Amol M., 2023. "Minding the communications gap: How can universities signal the availability and value of their scientific knowledge to commercial organizations?," Research Policy, Elsevier, vol. 52(9).
    14. Shin, Seungryul Ryan & Lee, Jisoo & Jung, Yura Rosemary & Hwang, Junseok, 2022. "The diffusion of scientific discoveries in government laboratories: The role of patents filed by government scientists," Research Policy, Elsevier, vol. 51(5).
    15. Balázs Kovács & Gianluca Carnabuci & Filippo Carlo Wezel, 2021. "Categories, attention, and the impact of inventions," Strategic Management Journal, Wiley Blackwell, vol. 42(5), pages 992-1023, May.
    16. Stefan Hossinger & Jörn Block & Xiangyu Chen & Arndt Werner, 2023. "Venture creation patterns in academic entrepreneurship: the role of founder motivations," The Journal of Technology Transfer, Springer, vol. 48(1), pages 68-125, February.
    17. Elena Veretennik & Maria Yudkevich, 2023. "Inconsistent quality signals: evidence from the regional journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3675-3701, June.
    18. Francisco Polidoro & Curba Morris Lampert & Minyoung Kim, 2022. "External knowledge sourcing, knowledge spillovers, and internal collaboration: The effects of intrafirm linkages on firm‐university co‐authorship linkages," Strategic Management Journal, Wiley Blackwell, vol. 43(13), pages 2742-2776, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michaël Bikard, 2018. "Made in Academia: The Effect of Institutional Origin on Inventors’ Attention to Science," Organization Science, INFORMS, vol. 29(5), pages 818-836, October.
    2. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    3. Isabel Cavalli & Charlie Joyez, 2021. "The Dynamics of French Universities in Patent Collaboration Networks," GREDEG Working Papers 2021-38, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    4. Eunhee Sohn, 2021. "How Local Industry R&D Shapes Academic Research: Evidence from the Agricultural Biotechnology Revolution," Organization Science, INFORMS, vol. 32(3), pages 675-707, May.
    5. Alessandra Scandura, 2019. "The role of scientific and market knowledge in the inventive process: evidence from a survey of industrial inventors," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1029-1069, August.
    6. Matt Marx & Aaron Fuegi, 2020. "Reliance on science: Worldwide front‐page patent citations to scientific articles," Strategic Management Journal, Wiley Blackwell, vol. 41(9), pages 1572-1594, September.
    7. Basse Mama, Houdou, 2018. "Nonlinear capital market payoffs to science-led innovation," Research Policy, Elsevier, vol. 47(6), pages 1084-1095.
    8. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.
    9. Baruffaldi, Stefano & Poege, Felix, 2020. "A Firm Scientific Community: Industry Participation and Knowledge Diffusion," IZA Discussion Papers 13419, Institute of Labor Economics (IZA).
    10. Hohberger, Jan, 2016. "Diffusion of science-based inventions," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 66-77.
    11. Michael Roach & Wesley M. Cohen, 2012. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," NBER Working Papers 18292, National Bureau of Economic Research, Inc.
    12. René Belderbos & Bart Leten & Shinya Suzuki, 2017. "Scientific research, firm heterogeneity, and foreign R&D locations of multinational firms," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 26(3), pages 691-711, September.
    13. Bryan, Kevin A. & Ozcan, Yasin & Sampat, Bhaven, 2020. "In-text patent citations: A user's guide," Research Policy, Elsevier, vol. 49(4).
    14. Roberto Camerani & Daniele Rotolo & Nicola Grassano, 2018. "Do Firms Publish? A Multi-Sectoral Analysis," SPRU Working Paper Series 2018-21, SPRU - Science Policy Research Unit, University of Sussex Business School.
    15. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    16. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    17. Vestal, Alex & Danneels, Erwin, 2018. "Knowledge exchange in clusters: The contingent role of regional inventive concentration," Research Policy, Elsevier, vol. 47(10), pages 1887-1903.
    18. Sheer, Lia, 2022. "Sitting on the Fence: Integrating the two worlds of scientific discovery and invention within the firm," Research Policy, Elsevier, vol. 51(7).
    19. Rotolo, Daniele & Camerani, Roberto & Grassano, Nicola & Martin, Ben R., 2022. "Why do firms publish? A systematic literature review and a conceptual framework," Research Policy, Elsevier, vol. 51(10).
    20. Balland, Pierre-Alexandre & Boschma, Ron, 2022. "Do scientific capabilities in specific domains matter for technological diversification in European regions?," Research Policy, Elsevier, vol. 51(10).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:66:y:2020:i:8:p:3425-3443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.