IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v31y2001i4p112-122.html
   My bibliography  Save this article

An Analysis of the Applications of Neural Networks in Finance

Author

Listed:
  • Adam Fadlalla

    (Department of Computer and Information Science, Cleveland State University,1860 E18th Street, Cleveland, Ohio 44114)

  • Chien-Hua Lin

    (Department of Computer and Information Science, Cleveland State University)

Abstract

Over the last 10 years, neural networks have been increasingly applied to various areas of finance. Neural networks are more often applied on the assets side than on the liabilities side of the balance sheet. Some major characteristics of the areas of these applications are their data intensity, unstructured nature, high degree of uncertainty, and hidden relationships. Most of the applications use the backpropagation model with one hidden layer. In most of these applications, neural networks out-performed traditional statistical models, such as discriminant and regression analysis. Furthermore, these applications have shown significant success in financial practice, for example, in forecasting T-bills, in asset management, in portfolio selection, and in fraud detection.

Suggested Citation

  • Adam Fadlalla & Chien-Hua Lin, 2001. "An Analysis of the Applications of Neural Networks in Finance," Interfaces, INFORMS, vol. 31(4), pages 112-122, August.
  • Handle: RePEc:inm:orinte:v:31:y:2001:i:4:p:112-122
    DOI: 10.1287/inte.31.4.112.9662
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.31.4.112.9662
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.31.4.112.9662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tam, KY, 1991. "Neural network models and the prediction of bank bankruptcy," Omega, Elsevier, vol. 19(5), pages 429-445.
    2. Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
    3. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    4. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei En Lee, 2019. "The Empirical Study of Investor Sentiment on Stock Return Prediction," International Journal of Economics and Financial Issues, Econjournals, vol. 9(2), pages 119-124.
    2. Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
    3. Adam Fadlalla & Farzaneh Amani, 2014. "Predicting Next Trading Day Closing Price Of Qatar Exchange Index Using Technical Indicators And Artificial Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 209-223, October.
    4. Waychal, Nachiketas & Laha, Arnab Kumar & Sinha, Ankur, 2022. "Customized forecasting with Adaptive Ensemble Generator," IIMA Working Papers WP 2022-06-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Qing Cao & Mark Parry & Karyl Leggio, 2011. "The three-factor model and artificial neural networks: predicting stock price movement in China," Annals of Operations Research, Springer, vol. 185(1), pages 25-44, May.
    6. Hoi-Ming Chi & Okan K. Ersoy & Herbert Moskowitz & Kemal Altinkemer, 2007. "Toward Automated Intelligent Manufacturing Systems (AIMS)," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 302-312, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greta Falavigna, 2006. "Models for Default Risk Analysis: Focus on Artificial Neural Networks, Model Comparisons, Hybrid Frameworks," CERIS Working Paper 200610, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    2. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
    3. Sancho Salcedo‐Sanz & Mario DePrado‐Cumplido & María Jesús Segovia‐Vargas & Fernando Pérez‐Cruz & Carlos Bousoño‐Calzón, 2004. "Feature selection methods involving support vector machines for prediction of insolvency in non‐life insurance companies," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 261-281, October.
    4. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    5. Gruca, TS & Klemz, BR, 1998. "Using Neural Networks to Identify Competitive Market Structures from Aggregate Market Response Data," Omega, Elsevier, vol. 26(1), pages 49-62, February.
    6. Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
    7. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    8. Haider A. Khan, 2002. "Can Banks Learn to Be Rational?," CIRJE F-Series CIRJE-F-151, CIRJE, Faculty of Economics, University of Tokyo.
    9. Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
    10. Haider A. Khan, 2004. "General Conclusions: From Crisis to a Global Political Economy of Freedom," Palgrave Macmillan Books, in: Global Markets and Financial Crises in Asia, chapter 9, pages 193-211, Palgrave Macmillan.
    11. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    12. Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
    13. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    14. Kyoung-jae Kim & Kichun Lee & Hyunchul Ahn, 2018. "Predicting Corporate Financial Sustainability Using Novel Business Analytics," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    15. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    16. Wolfgang Karl Härdle & Dedy Dwi Prastyo, 2013. "Default Risk Calculation based on Predictor Selection for the Southeast Asian Industry," SFB 649 Discussion Papers SFB649DP2013-037, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    17. Mark T. Leung & An-Sing Chen, 2005. "Performance evaluation of neural network architectures: the case of predicting foreign exchange correlations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 403-420.
    18. Philippe Paquet, 1997. "L'utilisation des réseaux de neurones artificiels en finance," Working Papers 1997-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    19. Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
    20. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:31:y:2001:i:4:p:112-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.