IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y2020i1p145-163.html
   My bibliography  Save this article

Sampling Scenario Set Partition Dual Bounds for Multistage Stochastic Programs

Author

Listed:
  • Ilke Bakir

    (Department of Operations, University of Groningen, 9712 CP Groningen, Netherlands)

  • Natashia Boland

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Brian Dandurand

    (Department of Mathematical Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria 3000, Australia)

  • Alan Erera

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

We consider multistage stochastic programming problems in which the random parameters have finite support, leading to optimization over a finite scenario set . There has been recent interest in dual bounds for such problems, of two types. One, known as expected group subproblem objective ( EGSO ) bounds , require solution of a group subproblem , which optimizes over a subset of the scenarios, for all subsets of the scenario set that have a given cardinality. Increasing the subset cardinality in the group subproblem improves bound quality, ( EGSO bounds form a hierarchy), but the number of group subproblems required to compute the bound increases very rapidly. Another is based on partitions of the scenario set into subsets. Combining the values of the group subproblems for all subsets in a partition yields a partition bound . In this paper, we consider partitions into subsets of (nearly) equal cardinality. We show that the expected value of the partition bound over all such partitions also forms a hierarchy. To make use of these bounds in practice, we propose random sampling of partitions and suggest two enhancements to the approach: sampling partitions that align with the multistage scenario tree structure and use of an auxiliary optimization problem to discover new best bounds based on the values of group subproblems already computed. We establish the effectiveness of these ideas with computational experiments on benchmark problems. Finally, we give a heuristic to save computational effort by ceasing computation of a partition partway through if it appears unpromising.

Suggested Citation

  • Ilke Bakir & Natashia Boland & Brian Dandurand & Alan Erera, 2020. "Sampling Scenario Set Partition Dual Bounds for Multistage Stochastic Programs," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 145-163, January.
  • Handle: RePEc:inm:orijoc:v:32:y:2020:i:1:p:145-163
    DOI: 10.1287/ijoc.2018.0885
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2018.0885
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2018.0885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shabbir Ahmed & Renan Garcia, 2003. "Dynamic Capacity Acquisition and Assignment under Uncertainty," Annals of Operations Research, Springer, vol. 124(1), pages 267-283, November.
    2. S. Ayca Erdogan & Alexander Gose & Brian T. Denton, 2015. "Online appointment sequencing and scheduling," IISE Transactions, Taylor & Francis Journals, vol. 47(11), pages 1267-1286, November.
    3. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    4. Francesca Maggioni & Elisabetta Allevi & Marida Bertocchi, 2014. "Bounds in Multistage Linear Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 200-229, October.
    5. Willem Klein Haneveld & Maarten van der Vlerk, 1999. "Stochastic integer programming:General models and algorithms," Annals of Operations Research, Springer, vol. 85(0), pages 39-57, January.
    6. Fernando Veliz & Jean-Paul Watson & Andres Weintraub & Roger Wets & David Woodruff, 2015. "Stochastic optimization models in forest planning: a progressive hedging solution approach," Annals of Operations Research, Springer, vol. 232(1), pages 259-274, September.
    7. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer & Mark S. Roberts, 2011. "Optimizing the Societal Benefits of the Annual Influenza Vaccine: A Stochastic Programming Approach," Operations Research, INFORMS, vol. 59(5), pages 1131-1143, October.
    8. Jean-Paul Watson & David Woodruff, 2011. "Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems," Computational Management Science, Springer, vol. 8(4), pages 355-370, November.
    9. Francesca Maggioni & Elisabetta Allevi & Marida Bertocchi, 2016. "Monotonic bounds in multistage mixed-integer stochastic programming," Computational Management Science, Springer, vol. 13(3), pages 423-457, July.
    10. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    11. Maarten Vlerk, 2010. "Convex approximations for a class of mixed-integer recourse models," Annals of Operations Research, Springer, vol. 177(1), pages 139-150, June.
    12. Kai Huang & Shabbir Ahmed, 2009. "The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty," Operations Research, INFORMS, vol. 57(4), pages 893-904, August.
    13. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. İ. Esra Büyüktahtakın, 2022. "Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs," Annals of Operations Research, Springer, vol. 309(1), pages 1-35, February.
    2. Jiang, Xiaoping & Bai, Ruibin & Ren, Jianfeng & Li, Jiawei & Kendall, Graham, 2022. "Lagrange dual bound computation for stochastic service network design," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1097-1112.
    3. Yin, Xuecheng & Büyüktahtakın, İ. Esra & Patel, Bhumi P., 2023. "COVID-19: Data-Driven optimal allocation of ventilator supply under uncertainty and risk," European Journal of Operational Research, Elsevier, vol. 304(1), pages 255-275.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin Ryan & Shabbir Ahmed & Santanu S. Dey & Deepak Rajan & Amelia Musselman & Jean-Paul Watson, 2020. "Optimization-Driven Scenario Grouping," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 805-821, July.
    2. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    3. Bismark Singh & Bernard Knueven, 2021. "Lagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage system," Journal of Global Optimization, Springer, vol. 80(4), pages 965-989, August.
    4. Giovanni Pantuso & Trine K. Boomsma, 2020. "On the number of stages in multistage stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 581-603, September.
    5. Francesca Maggioni & Elisabetta Allevi & Marida Bertocchi, 2016. "Monotonic bounds in multistage mixed-integer stochastic programming," Computational Management Science, Springer, vol. 13(3), pages 423-457, July.
    6. Aghalari, Amin & Nur, Farjana & Marufuzzaman, Mohammad, 2021. "Solving a stochastic inland waterway port management problem using a parallelized hybrid decomposition algorithm," Omega, Elsevier, vol. 102(C).
    7. Huang, Zhouchun & Zheng, Qipeng Phil, 2020. "A multistage stochastic programming approach for preventive maintenance scheduling of GENCOs with natural gas contract," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1036-1051.
    8. Sushil R. Poudel & Md Abdul Quddus & Mohammad Marufuzzaman & Linkan Bian & Reuben F. Burch V, 2019. "Managing congestion in a multi-modal transportation network under biomass supply uncertainty," Annals of Operations Research, Springer, vol. 273(1), pages 739-781, February.
    9. Serhat Gul & Brian T. Denton & John W. Fowler, 2015. "A Progressive Hedging Approach for Surgery Planning Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 755-772, November.
    10. Poudel, Sushil Raj & Marufuzzaman, Mohammad & Bian, Linkan, 2016. "A hybrid decomposition algorithm for designing a multi-modal transportation network under biomass supply uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 1-25.
    11. Kabli, Mohannad & Quddus, Md Abdul & Nurre, Sarah G. & Marufuzzaman, Mohammad & Usher, John M., 2020. "A stochastic programming approach for electric vehicle charging station expansion plans," International Journal of Production Economics, Elsevier, vol. 220(C).
    12. İ. Esra Büyüktahtakın, 2022. "Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs," Annals of Operations Research, Springer, vol. 309(1), pages 1-35, February.
    13. Schulze, Tim & Grothey, Andreas & McKinnon, Ken, 2017. "A stabilised scenario decomposition algorithm applied to stochastic unit commitment problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 247-259.
    14. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    15. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    16. Bomze, Immanuel M. & Gabl, Markus & Maggioni, Francesca & Pflug, Georg Ch., 2022. "Two-stage stochastic standard quadratic optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 21-34.
    17. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    18. Zhili Zhou & Yongpei Guan, 2013. "Two-stage stochastic lot-sizing problem under cost uncertainty," Annals of Operations Research, Springer, vol. 209(1), pages 207-230, October.
    19. Fan, Yingjie & Schwartz, Frank & Voß, Stefan, 2017. "Flexible supply chain planning based on variable transportation modes," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 654-666.
    20. Gilles Bareilles & Yassine Laguel & Dmitry Grishchenko & Franck Iutzeler & Jérôme Malick, 2020. "Randomized Progressive Hedging methods for multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 295(2), pages 535-560, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:2020:i:1:p:145-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.