IDEAS home Printed from https://ideas.repec.org/a/inm/ordeca/v7y2010i2p185-195.html
   My bibliography  Save this article

Valuing Multifactor Real Options Using an Implied Binomial Tree

Author

Listed:
  • Tianyang Wang

    (McCombs School of Business, The University of Texas at Austin, Austin, Texas 78712)

  • James S. Dyer

    (McCombs School of Business, The University of Texas at Austin, Austin, Texas 78712)

Abstract

This paper proposes an approach for solving a multifactor real options problem by approximating the underlying stochastic process with an implied binomial tree. The implied binomial tree is constructed to be consistent with simulated market information. By simulating European option prices as artificial market information, we apply the implied binomial tree method for real options valuation when the options are contingent on the value of market uncertainties that are not traded assets. Compared to the discrete approximations suggested in the current literature, this method offers a more flexible distribution assumption for project values and therefore provides an alternative approach to estimating the value of high-dimensional real options. For risk managers, it serves as a capital budgeting method for projects with managerial flexibility.

Suggested Citation

  • Tianyang Wang & James S. Dyer, 2010. "Valuing Multifactor Real Options Using an Implied Binomial Tree," Decision Analysis, INFORMS, vol. 7(2), pages 185-195, June.
  • Handle: RePEc:inm:ordeca:v:7:y:2010:i:2:p:185-195
    DOI: 10.1287/deca.1100.0174
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/deca.1100.0174
    Download Restriction: no

    File URL: https://libkey.io/10.1287/deca.1100.0174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Pedro Godinho, 2006. "Monte Carlo Estimation of Project Volatility for Real Options Analysis," GEMF Working Papers 2006-01, GEMF, Faculty of Economics, University of Coimbra.
    3. Jackwerth, Jens Carsten, 1996. "Generalized Binomial Trees," MPRA Paper 11635, University Library of Munich, Germany, revised 12 May 1997.
    4. Adam Borison, 2005. "Real Options Analysis: Where Are the Emperor's Clothes?," Journal of Applied Corporate Finance, Morgan Stanley, vol. 17(2), pages 17-31, March.
    5. James E. Smith & Robert F. Nau, 1995. "Valuing Risky Projects: Option Pricing Theory and Decision Analysis," Management Science, INFORMS, vol. 41(5), pages 795-816, May.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Luiz E. Brandão & James S. Dyer & Warren J. Hahn, 2005. "Response to Comments on Brandão et al. (2005)," Decision Analysis, INFORMS, vol. 2(2), pages 103-109, June.
    8. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    9. Hahn, Warren J. & Dyer, James S., 2008. "Discrete time modeling of mean-reverting stochastic processes for real option valuation," European Journal of Operational Research, Elsevier, vol. 184(2), pages 534-548, January.
    10. Luiz E. Brandão & James S. Dyer & Warren J. Hahn, 2005. "Using Binomial Decision Trees to Solve Real-Option Valuation Problems," Decision Analysis, INFORMS, vol. 2(2), pages 69-88, June.
    11. Tom Arnold & Timothy Falcon Crack & Adam Schwartz, 2007. "Valuing real options using implied binomial trees and commodity futures options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(3), pages 203-226, March.
    12. Kian Guan Lim & Da Zhi, 2002. "Pricing options using implied trees: Evidence from FTSE‐100 options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(7), pages 601-626, July.
    13. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    14. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    15. James E. Smith & Kevin F. McCardle, 1999. "Options in the Real World: Lessons Learned in Evaluating Oil and Gas Investments," Operations Research, INFORMS, vol. 47(1), pages 1-15, February.
    16. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    17. James E. Smith, 2005. "Alternative Approaches for Solving Real-Options Problems," Decision Analysis, INFORMS, vol. 2(2), pages 89-102, June.
    18. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atul Chandra & Peter R. Hartley & Gopalan Nair, 2022. "Multiple Volatility Real Options Approach to Investment Decisions Under Uncertainty," Decision Analysis, INFORMS, vol. 19(2), pages 79-98, June.
    2. Jing Ai & Patrick L. Brockett & Tianyang Wang, 2017. "Optimal Enterprise Risk Management and Decision Making With Shared and Dependent Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(4), pages 1127-1169, December.
    3. Alejandro Mac Cawley & Maximiliano Cubillos & Rodrigo Pascual, 2020. "A real options approach for joint overhaul and replacement strategies with mean reverting prices," Annals of Operations Research, Springer, vol. 286(1), pages 303-324, March.
    4. Tianyang Wang & James S. Dyer, 2012. "A Copulas-Based Approach to Modeling Dependence in Decision Trees," Operations Research, INFORMS, vol. 60(1), pages 225-242, February.
    5. Pedro Godinho, 2015. "Estimating State-Dependent Volatility of Investment Projects: A Simulation Approach," GEMF Working Papers 2015-02, GEMF, Faculty of Economics, University of Coimbra.
    6. L. Robin Keller, 2011. "From the Editor ---Multiattribute and Intertemporal Preferences, Probability, and Stochastic Processes: Models and Assessment," Decision Analysis, INFORMS, vol. 8(3), pages 165-169, September.
    7. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    8. Nadarajah, Selvaprabu & Margot, François & Secomandi, Nicola, 2017. "Comparison of least squares Monte Carlo methods with applications to energy real options," European Journal of Operational Research, Elsevier, vol. 256(1), pages 196-204.
    9. L. Robin Keller & Kelly M. Kophazi, 2010. "From the Editors..," Decision Analysis, INFORMS, vol. 7(2), pages 151-154, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    2. Warren J. Hahn & James S. Dyer, 2011. "A Discrete Time Approach for Modeling Two-Factor Mean-Reverting Stochastic Processes," Decision Analysis, INFORMS, vol. 8(3), pages 220-232, September.
    3. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, August.
    4. Savolainen, Jyrki, 2016. "Real options in metal mining project valuation: Review of literature," Resources Policy, Elsevier, vol. 50(C), pages 49-65.
    5. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Lin Zhao & Sweder van Wijnbergen, 2013. "A Real Option Perspective on Valuing Gas Fields," Tinbergen Institute Discussion Papers 13-126/VI/DSF60, Tinbergen Institute.
    8. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    9. Kim, In Joon & Park, Gun Youb, 2006. "An empirical comparison of implied tree models for KOSPI 200 index options," International Review of Economics & Finance, Elsevier, vol. 15(1), pages 52-71.
    10. U Hou Lok & Yuh‐Dauh Lyuu, 2020. "Efficient trinomial trees for local‐volatility models in pricing double‐barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 556-574, April.
    11. Nadarajah, Selvaprabu & Margot, François & Secomandi, Nicola, 2017. "Comparison of least squares Monte Carlo methods with applications to energy real options," European Journal of Operational Research, Elsevier, vol. 256(1), pages 196-204.
    12. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    13. Atul Chandra & Peter R. Hartley & Gopalan Nair, 2022. "Multiple Volatility Real Options Approach to Investment Decisions Under Uncertainty," Decision Analysis, INFORMS, vol. 19(2), pages 79-98, June.
    14. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    15. Dasheng Ji & B. Brorsen, 2011. "A recombining lattice option pricing model that relaxes the assumption of lognormality," Review of Derivatives Research, Springer, vol. 14(3), pages 349-367, October.
    16. Arun Chockalingam & Kumar Muthuraman, 2011. "American Options Under Stochastic Volatility," Operations Research, INFORMS, vol. 59(4), pages 793-809, August.
    17. Luiz E. Brandão & James S. Dyer & Warren J. Hahn, 2005. "Response to Comments on Brandão et al. (2005)," Decision Analysis, INFORMS, vol. 2(2), pages 103-109, June.
    18. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    19. Wael Bahsoun & Pawel Góra & Silvia Mayoral & Manuel Morales, 2006. "Random Dynamics and Finance: Constructing Implied Binomial Trees from a Predetermined Stationary Den," Faculty Working Papers 13/06, School of Economics and Business Administration, University of Navarra.
    20. Carol Alexander & Xi Chen, 2021. "Model risk in real option valuation," Annals of Operations Research, Springer, vol. 299(1), pages 1025-1056, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ordeca:v:7:y:2010:i:2:p:185-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.