IDEAS home Printed from https://ideas.repec.org/a/igg/joris0/v12y2021i3p18-33.html
   My bibliography  Save this article

Supernetwork Representation Formulation of a Multiclass Simultaneous Transportation Equilibrium Model as a Fixed Demand User Equilibrium Problem

Author

Listed:
  • Mohamad K. Hasan

    (Kuwait University, Kuwait)

  • Mohammad Saoud

    (Kuwait University, Kuwait)

  • Raed Al-Husain

    (Kuwait University, Kuwait)

Abstract

A multiclass simultaneous transportation equilibrium model (MSTEM) explicitly distinguishes between different user classes in terms of socioeconomic attributes, trip purpose, pure and combined transportation modes, as well as departure time, all interacting over a physically unique multimodal network. It enhances the prediction process behaviorally by combining the trip generation and departure time choices to trip distribution, modal split, and trip assignment choices in a unified and flexible framework that has many advantages from both supply and demand sides. However, the development of this concept of multiple classes increases the mathematical complexity of travel forecasting models. In this research, the authors reduce this mathematical complexity by using the supernetwork representation formulation of the diagonalized MSTEM as a fixed demand user equilibrium (FDUE) problem.

Suggested Citation

  • Mohamad K. Hasan & Mohammad Saoud & Raed Al-Husain, 2021. "Supernetwork Representation Formulation of a Multiclass Simultaneous Transportation Equilibrium Model as a Fixed Demand User Equilibrium Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 12(3), pages 18-33, July.
  • Handle: RePEc:igg:joris0:v:12:y:2021:i:3:p:18-33
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJORIS.20210701.oa2
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao, Jia & Chen, Anthony & Ryu, Seungkyu & Shi, Feng, 2014. "A general unconstrained optimization formulation for the combined distribution and assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 137-160.
    2. K. Nabil Ali Safwat & Thomas L. Magnanti, 1988. "A Combined Trip Generation, Trip Distribution, Modal Split, and Trip Assignment Model," Transportation Science, INFORMS, vol. 22(1), pages 14-30, February.
    3. Florian, Michael & Spiess, Heinz, 1982. "The convergence of diagonalization algorithms for asymmetric network equilibrium problems," Transportation Research Part B: Methodological, Elsevier, vol. 16(6), pages 477-483, December.
    4. Mohamad Hasan & Hussain Dashti, 2007. "A Multiclass Simultaneous Transportation Equilibrium Model," Networks and Spatial Economics, Springer, vol. 7(3), pages 197-211, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Zhong & Chen, Anthony & Wong, S.C., 2009. "Alternative formulations of a combined trip generation, trip distribution, modal split, and trip assignment model," European Journal of Operational Research, Elsevier, vol. 198(1), pages 129-138, October.
    2. Li, Guoyuan & Chen, Anthony, 2023. "Strategy-based transit stochastic user equilibrium model with capacity and number-of-transfers constraints," European Journal of Operational Research, Elsevier, vol. 305(1), pages 164-183.
    3. Yao, Jia & Chen, Anthony & Ryu, Seungkyu & Shi, Feng, 2014. "A general unconstrained optimization formulation for the combined distribution and assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 137-160.
    4. Mohamad Hasan & Hussain Dashti, 2007. "A Multiclass Simultaneous Transportation Equilibrium Model," Networks and Spatial Economics, Springer, vol. 7(3), pages 197-211, September.
    5. Moore, II, James E. & Kim, Geunyoung & Cho, Seongdil & Hu, Hsi-hwa & Xu, Rong, 1997. "Evaluating System ATMIS Technologies Via Rapid Estimation Of Network Flows: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5c70f3d9, Institute of Transportation Studies, UC Berkeley.
    6. Xu, Shu-Xian & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2018. "Mode choice and railway subsidy in a congested monocentric city with endogenous population distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 413-433.
    7. Jingni Song & Feng Chen & Qunqi Wu & Weiyu Liu & Feiyang Xue & Kai Du, 2019. "Optimization of Passenger Transportation Corridor Mode Supply Structure in Regional Comprehensive Transport Considering Economic Equilibrium," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    8. Seungkyu Ryu & Anthony Chen & Xiangdong Xu & Keechoo Choi, 2014. "A Dual Approach for Solving the Combined Distribution and Assignment Problem with Link Capacity Constraints," Networks and Spatial Economics, Springer, vol. 14(2), pages 245-270, June.
    9. Justin Siegel & Joaquín Cea & José Fernández & Renán Rodriguez & David Boyce, 2006. "Comparisons of Urban Travel Forecasts Prepared with the Sequential Procedure and a Combined Model," Networks and Spatial Economics, Springer, vol. 6(2), pages 135-148, June.
    10. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    11. Ennio Cascetta & Mariano Gallo & Bruno Montella, 2006. "Models and algorithms for the optimization of signal settings on urban networks with stochastic assignment models," Annals of Operations Research, Springer, vol. 144(1), pages 301-328, April.
    12. Ampol Karoonsoontawong & Dung-Ying Lin, 2015. "Combined Gravity Model Trip Distribution and Paired Combinatorial Logit Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 15(4), pages 1011-1048, December.
    13. Seungkyu Ryu, 2021. "Mode Choice Change under Environmental Constraints in the Combined Modal Split and Traffic Assignment Model," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    14. Xu, Meng & Chen, Anthony & Gao, Ziyou, 2008. "An improved origin-based algorithm for solving the combined distribution and assignment problem," European Journal of Operational Research, Elsevier, vol. 188(2), pages 354-369, July.
    15. Qiang Meng & Hai Yang & Sze-Chun Wong, 2000. "A Combined Land-Use and Transportation Model for Work Trips," Environment and Planning B, , vol. 27(1), pages 93-103, February.
    16. D E Boyce, 1984. "Urban Transportation Network-Equilibrium and Design Models: Recent Achievements and Future Prospects," Environment and Planning A, , vol. 16(11), pages 1445-1474, November.
    17. Louis Grange & Felipe González & Ignacio Vargas & Rodrigo Troncoso, 2015. "A Logit Model With Endogenous Explanatory Variables and Network Externalities," Networks and Spatial Economics, Springer, vol. 15(1), pages 89-116, March.
    18. Patrice Marcotte & Laura Wynter, 2004. "A New Look at the Multiclass Network Equilibrium Problem," Transportation Science, INFORMS, vol. 38(3), pages 282-292, August.
    19. Dulce Rosas & Jordi Castro & Lídia Montero, 2009. "Using ACCPM in a simplicial decomposition algorithm for the traffic assignment problem," Computational Optimization and Applications, Springer, vol. 44(2), pages 289-313, November.
    20. Agnivesh Pani & Prasanta K. Sahu & Furqan A. Bhat, 2021. "Assessing the Spatial Transferability of Freight (Trip) Generation Models across and within States of India: Empirical Evidence and Implications for Benefit Transfer," Networks and Spatial Economics, Springer, vol. 21(2), pages 465-493, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:joris0:v:12:y:2021:i:3:p:18-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.