IDEAS home Printed from https://ideas.repec.org/a/ibn/sarjnl/v9y2021i2p118.html
   My bibliography  Save this article

Influence of Phosphorus Fertilizer on "Ware" Potato Production in Acid Soils in Kenya

Author

Listed:
  • Evans Mutange Akoto
  • Caleb O. Othieno
  • Julius O. Ochuodho

Abstract

One of the major challenges facing potato (Solanum Tuberosum L) production in Kenya is low and declining yield. This trend is caused by several factors which include low quality and quantity of seed, climate change, inadequate extension services, pests and diseases and more importantly low and declining soil fertility, particularly phosphorus (KEPHIS, 2016 and Karanja et al., 2014). Unfortunately, the current phosphorus fertilizer rate recommendation available for “ware” potato production in Kenya is “blanket” or general (90 kg phosphorus ha-1) and has not been updated for a long time to address the declining soil fertility. This prevents proper utilization of phosphorus fertilizers in achieving optimal production of “ware” potatoes. Therefore, this study investigated influence of different rates of phosphorus (TSP) fertilizer on “ware” potato yield and quality in three acidic (pH ≤ 5.8) test sites- Lari, Ainabkoi and Saboti sub Counties. Two varieties, Unica and Shangi, were tested. The field experiment was a split plot arrangement in Randomised Complete Block Design (RCBD) with six treatments (0 N & 0 P), 0, 30, 60, 90 and 120 kg ha-1 phosphorus, replicated three times. Data collected included weight, quantity and quality of tubers. The data was analysed using analysis of variance (ANOVA) at 5 % confidence levels with General Statistics (GENSTAT) and excel soft wares. Results indicated that phosphorus fertilizer influenced “ware” potato yield. At Saboti application of 120 and 90 kg phosphorus ha-1 for Shangi and Unica resulted in highest “ware” yield of 19.6 and 40.2 t ha-1, respectively. At Ainabkoi application of 120 kg ha-1 phosphorus produced highest “ware” potato yields of 10.7 t ha-1 and 26.8 t ha-1 of Shangi and Unica, respectively. At Lari, application of 90 and 120 kg ha-1 phosphorus produced highest “ware” potato yield of 7.0 t ha-1 and 17.5 t ha-1 for Shangi and Unica, respectively. During the season, there was a build-up of soil available phosphorus. Thus, there is need for farmers to test their soil at the beginning of every potato growing season.

Suggested Citation

  • Evans Mutange Akoto & Caleb O. Othieno & Julius O. Ochuodho, 2021. "Influence of Phosphorus Fertilizer on "Ware" Potato Production in Acid Soils in Kenya," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 9(2), pages 118-118, December.
  • Handle: RePEc:ibn:sarjnl:v:9:y:2021:i:2:p:118
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/sar/article/download/0/0/42503/44342
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/sar/article/view/0/42503
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Onder, Sermet & Caliskan, Mehmet Emin & Onder, Derya & Caliskan, Sevgi, 2005. "Different irrigation methods and water stress effects on potato yield and yield components," Agricultural Water Management, Elsevier, vol. 73(1), pages 73-86, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    2. Zhou, Zhenjiang & Plauborg, Finn & Parsons, David & Andersen, Mathias Neumann, 2018. "Potato canopy growth, yield and soil water dynamics under different irrigation systems," Agricultural Water Management, Elsevier, vol. 202(C), pages 9-18.
    3. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    4. Cheng, Minghui & Wang, Haidong & Zhang, Fucang & Wang, Xiukang & Liao, Zhenqi & Zhang, Shaohui & Yang, Qiliang & Fan, Junliang, 2023. "Effects of irrigation and fertilization regimes on tuber yield, water-nutrient uptake and productivity of potato under drip fertigation in sandy regions of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Ferreira, Camila Jorge Bernabé & Zotarelli, Lincoln & Tormena, Cássio Antonio & Rens, Libby R. & Rowland, Diane L., 2017. "Effects of water table management on least limiting water range and potato root growth," Agricultural Water Management, Elsevier, vol. 186(C), pages 1-11.
    6. Ierna, Anita & Pandino, Gaetano & Lombardo, Sara & Mauromicale, Giovanni, 2011. "Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization," Agricultural Water Management, Elsevier, vol. 101(1), pages 35-41.
    7. Liu, Minguo & Wang, Zikui & Mu, Le & Xu, Rui & Yang, Huimin, 2021. "Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China," Agricultural Water Management, Elsevier, vol. 248(C).
    8. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Montoya, F. & García, C. & Pintos, F. & Otero, A., 2017. "Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions," Agricultural Water Management, Elsevier, vol. 193(C), pages 30-45.
    10. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    11. O’Shaughnessy, Susan A. & Rho, Hyungmin & Colaizzi, Paul D. & Workneh, Fekede & Rush, Charles M., 2022. "Impact of zebra chip disease and irrigation levels on potato production," Agricultural Water Management, Elsevier, vol. 269(C).
    12. Montoya, F. & Camargo, D. & Domínguez, A. & Ortega, J.F. & Córcoles, J.I., 2018. "Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 203(C), pages 297-310.
    13. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2016. "Drought effects on root and tuber production: A meta-analysis," Agricultural Water Management, Elsevier, vol. 176(C), pages 122-131.
    14. Petr ELZNER & Miroslav JŮZL & Pavel KASAL, 2018. "Effect of different drip irrigation regimes on tuber and starch yield of potatoes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(11), pages 546-550.
    15. Ierna, Anita & Mauromicale, Giovanni, 2012. "Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime," Agricultural Water Management, Elsevier, vol. 115(C), pages 276-284.
    16. Kadaja, Jüri & Saue, Triin, 2016. "Potential effects of different irrigation and drainage regimes on yield and water productivity of two potato varieties under Estonian temperate climate," Agricultural Water Management, Elsevier, vol. 165(C), pages 61-71.
    17. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping & Hou, Xiao-Yan, 2007. "Effects of soil matric potential on potato growth under drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 34-42, March.
    18. Camargo, D.C. & Montoya, F. & Córcoles, J.I. & Ortega, J.F., 2015. "Modeling the impacts of irrigation treatments on potato growth and development," Agricultural Water Management, Elsevier, vol. 150(C), pages 119-128.
    19. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?," Agricultural Water Management, Elsevier, vol. 190(C), pages 1-5.
    20. Montoya, F. & Camargo, D. & Ortega, J.F. & Córcoles, J.I. & Domínguez, A., 2016. "Evaluation of Aquacrop model for a potato crop under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 164(P2), pages 267-280.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:sarjnl:v:9:y:2021:i:2:p:118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.