IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v88y2007i1-3p34-42.html
   My bibliography  Save this article

Effects of soil matric potential on potato growth under drip irrigation in the North China Plain

Author

Listed:
  • Wang, Feng-Xin
  • Kang, Yaohu
  • Liu, Shi-Ping
  • Hou, Xiao-Yan

Abstract

No abstract is available for this item.

Suggested Citation

  • Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping & Hou, Xiao-Yan, 2007. "Effects of soil matric potential on potato growth under drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 34-42, March.
  • Handle: RePEc:eee:agiwat:v:88:y:2007:i:1-3:p:34-42
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(06)00238-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping, 2006. "Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain," Agricultural Water Management, Elsevier, vol. 79(3), pages 248-264, February.
    2. Yuan, Bao-Zhong & Nishiyama, Soichi & Kang, Yaohu, 2003. "Effects of different irrigation regimes on the growth and yield of drip-irrigated potato," Agricultural Water Management, Elsevier, vol. 63(3), pages 153-167, December.
    3. Phene, C. J. & Allee, C. P. & Pierro, J. D., 1989. "Soil matric potential sensor measurements in real-time irrigation scheduling," Agricultural Water Management, Elsevier, vol. 16(3), pages 173-185, September.
    4. Hegde, D. M. & Srinivas, K., 1989. "Effect of soil matric potential and nitrogen on growth, yield, nutrient uptake and water use of banana," Agricultural Water Management, Elsevier, vol. 16(1-2), pages 109-117, August.
    5. Viswanatha, G. B. & Ramachandrappa, B. K. & Nanjappa, H. V., 2002. "Soil-plant water status and yield of sweet corn (Zea mays L. cv. Saccharata) as influenced by drip irrigation and planting methods," Agricultural Water Management, Elsevier, vol. 55(2), pages 85-91, June.
    6. de Azevedo, Pedro V. & da Silva, Bernardo B. & da Silva, Vicente P. R., 2003. "Water requirements of irrigated mango orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 58(3), pages 241-254, February.
    7. Fabeiro, C. & Martin de Santa Olalla, F. & de Juan, J. A., 2001. "Yield and size of deficit irrigated potatoes," Agricultural Water Management, Elsevier, vol. 48(3), pages 255-266, June.
    8. Kashyap, P. S. & Panda, R. K., 2003. "Effect of irrigation scheduling on potato crop parameters under water stressed conditions," Agricultural Water Management, Elsevier, vol. 59(1), pages 49-66, March.
    9. Hodnett, M. G. & Bell, J. P. & Ah Koon, P. D. & Soopramanien, G. C. & Batchelor, C. H., 1990. "The control of drip irrigation of sugarcane using "index" tensiometers: Some comparisons with control by the water budget method," Agricultural Water Management, Elsevier, vol. 17(1-3), pages 189-207, January.
    10. Onder, Sermet & Caliskan, Mehmet Emin & Onder, Derya & Caliskan, Sevgi, 2005. "Different irrigation methods and water stress effects on potato yield and yield components," Agricultural Water Management, Elsevier, vol. 73(1), pages 73-86, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ruoshui & Wan, Shuqin & Kang, Yaohu & Dou, Chaoyin, 2014. "Assessment of secondary soil salinity prevention and economic benefit under different drip line placement and irrigation regime in northwest China," Agricultural Water Management, Elsevier, vol. 131(C), pages 41-49.
    2. Li, Jingang & Chen, Jing & He, Pingru & Chen, Dan & Dai, Xiaoping & Jin, Qiu & Su, Xiaoyue, 2022. "The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Kang, Yaohu & Chen, Ming & Wan, Shuqin, 2010. "Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain," Agricultural Water Management, Elsevier, vol. 97(9), pages 1303-1309, September.
    5. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    6. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    7. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.
    8. Matteau, Jean-Pascal & Célicourt, Paul & Létourneau, Guillaume & Gumiere, Thiago & Gumiere, Silvio J., 2022. "Effects of irrigation thresholds and temporal distribution on potato yield and water productivity in sandy soil," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Ferreira, Camila Jorge Bernabé & Zotarelli, Lincoln & Tormena, Cássio Antonio & Rens, Libby R. & Rowland, Diane L., 2017. "Effects of water table management on least limiting water range and potato root growth," Agricultural Water Management, Elsevier, vol. 186(C), pages 1-11.
    10. Zhang, You-Liang & Wang, Feng-Xin & Shock, Clinton Cleon & Yang, Kai-Jing & Kang, Shao-Zhong & Qin, Jing-Tao & Li, Si-En, 2017. "Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 160-171.
    11. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    12. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).
    13. Starr, G.C. & Rowland, D. & Griffin, T.S. & Olanya, O.M., 2008. "Soil water in relation to irrigation, water uptake and potato yield in a humid climate," Agricultural Water Management, Elsevier, vol. 95(3), pages 292-300, March.
    14. Gutiérrez-Gómez, Celia & Carrillo-Avila, Eugenio & Landeros-Sánchez, Cesáreo & Coh-Méndez, Domingo & Monsalvo-Espinosa, Avelardo & Arreola-Enríquez, Jesús & Pimentel-López, José, 2018. "Soil moisture tension as an alternative for improving sustainable use of irrigation water for habanero chilies (Capsicum chinense Jacq.)," Agricultural Water Management, Elsevier, vol. 204(C), pages 28-37.
    15. Yang, Kaijing & Wang, Fengxin & Shock, Clinton C. & Kang, Shaozhong & Huo, Zailin & Song, Na & Ma, Dan, 2017. "Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch," Agricultural Water Management, Elsevier, vol. 179(C), pages 260-270.
    16. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Yu, Yaze & Jiao, Yan & Yang, Wenzhu & Song, Chunni & Zhang, Jing & Liu, Yubin, 2022. "Mechanisms underlying nitrous oxide emissions and nitrogen leaching from potato fields under drip irrigation and furrow irrigation," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Chen, Ming & Kang, Yaohu & Wan, Shuqin & Liu, Shi-ping, 2009. "Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)," Agricultural Water Management, Elsevier, vol. 96(12), pages 1766-1772, December.
    19. Xiao, Chao & Ji, Qingyuan & Zhang, Fucang & Li, Yi & Fan, Junliang & Hou, Xianghao & Yan, Fulai & Liu, Xiaoqiang & Gong, Kaiyuan, 2023. "Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China," Agricultural Water Management, Elsevier, vol. 279(C).
    20. Wan, Shuqin & Kang, Yaohu & Wang, Dan & Liu, Shi-ping, 2010. "Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China," Agricultural Water Management, Elsevier, vol. 98(1), pages 105-113, December.
    21. Hong, Eun-Mi & Choi, Jin-Yong & Nam, Won-Ho & Kang, Moon-Seong & Jang, Jeong-Ryeol, 2014. "Monitoring nutrient accumulation and leaching in plastic greenhouse cultivation," Agricultural Water Management, Elsevier, vol. 146(C), pages 11-23.
    22. Alamilla-Magaña, J.C. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Landeros-Sánchez, C. & Vera-Lopez, J. & Juárez-López, J.F., 2016. "Soil moisture tension effect on sugar cane growth and yield," Agricultural Water Management, Elsevier, vol. 177(C), pages 264-273.
    23. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    24. Hiba Ghazouani & Giovanni Rallo & Amel Mguidiche & Basma Latrech & Boutheina Douh & Abdelhamid Boujelben & Giuseppe Provenzano, 2019. "Effects of Saline and Deficit Irrigation on Soil-Plant Water Status and Potato Crop Yield under the Semiarid Climate of Tunisia," Sustainability, MDPI, vol. 11(9), pages 1-16, May.
    25. Wan, Shuqin & Jiao, Yanping & Kang, Yaohu & Hu, Wei & Jiang, Shufang & Tan, Junli & Liu, Wei, 2012. "Drip irrigation of waxy corn (Zea mays L. var. ceratina Kulesh) for production in highly saline conditions," Agricultural Water Management, Elsevier, vol. 104(C), pages 210-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badr, M.A. & El-Tohamy, W.A. & Zaghloul, A.M., 2012. "Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 110(C), pages 9-15.
    2. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    3. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    4. Ierna, Anita & Pandino, Gaetano & Lombardo, Sara & Mauromicale, Giovanni, 2011. "Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization," Agricultural Water Management, Elsevier, vol. 101(1), pages 35-41.
    5. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    6. Ierna, Anita & Mauromicale, Giovanni, 2012. "Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime," Agricultural Water Management, Elsevier, vol. 115(C), pages 276-284.
    7. Ierna, Anita & Mauromicale, Giovanni, 2018. "Potato growth, yield and water productivity response to different irrigation and fertilization regimes," Agricultural Water Management, Elsevier, vol. 201(C), pages 21-26.
    8. Yang, Kaijing & Wang, Fengxin & Shock, Clinton C. & Kang, Shaozhong & Huo, Zailin & Song, Na & Ma, Dan, 2017. "Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch," Agricultural Water Management, Elsevier, vol. 179(C), pages 260-270.
    9. Camargo, D.C. & Montoya, F. & Córcoles, J.I. & Ortega, J.F., 2015. "Modeling the impacts of irrigation treatments on potato growth and development," Agricultural Water Management, Elsevier, vol. 150(C), pages 119-128.
    10. Patel, Neelam & Rajput, T.B.S., 2007. "Effect of drip tape placement depth and irrigation level on yield of potato," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 209-223, March.
    11. Cheng, Minghui & Wang, Haidong & Zhang, Fucang & Wang, Xiukang & Liao, Zhenqi & Zhang, Shaohui & Yang, Qiliang & Fan, Junliang, 2023. "Effects of irrigation and fertilization regimes on tuber yield, water-nutrient uptake and productivity of potato under drip fertigation in sandy regions of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    12. Onder, Sermet & Caliskan, Mehmet Emin & Onder, Derya & Caliskan, Sevgi, 2005. "Different irrigation methods and water stress effects on potato yield and yield components," Agricultural Water Management, Elsevier, vol. 73(1), pages 73-86, April.
    13. Pardon, P. & Reubens, B. & Mertens, J. & Verheyen, K. & De Frenne, P. & De Smet, G. & Van Waes, C. & Reheul, D., 2018. "Effects of temperate agroforestry on yield and quality of different arable intercrops," Agricultural Systems, Elsevier, vol. 166(C), pages 135-151.
    14. Darwish, T.M. & Atallah, T.W. & Hajhasan, S. & Haidar, A., 2006. "Nitrogen and water use efficiency of fertigated processing potato," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 95-104, September.
    15. Zhang, You-Liang & Wang, Feng-Xin & Shock, Clinton Cleon & Yang, Kai-Jing & Kang, Shao-Zhong & Qin, Jing-Tao & Li, Si-En, 2017. "Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 160-171.
    16. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Kundu, Bimal Chandra & Barman, Alak & Murad, Khandakar Faisal Ibn & Akter, Farzana, 2019. "Yield and quality of potato tuber and its water productivity are influenced by alternate furrow irrigation in a raised bed system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    17. Montoya, F. & Camargo, D. & Ortega, J.F. & Córcoles, J.I. & Domínguez, A., 2016. "Evaluation of Aquacrop model for a potato crop under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 164(P2), pages 267-280.
    18. Starr, G.C. & Rowland, D. & Griffin, T.S. & Olanya, O.M., 2008. "Soil water in relation to irrigation, water uptake and potato yield in a humid climate," Agricultural Water Management, Elsevier, vol. 95(3), pages 292-300, March.
    19. Xing, Yingying & Zhang, Teng & Jiang, Wenting & Li, Peng & Shi, Peng & Xu, Guoce & Cheng, Shengdong & Cheng, Yuting & Fan, Zhang & Wang, Xiukang, 2022. "Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    20. Zhou, Zhenjiang & Plauborg, Finn & Parsons, David & Andersen, Mathias Neumann, 2018. "Potato canopy growth, yield and soil water dynamics under different irrigation systems," Agricultural Water Management, Elsevier, vol. 202(C), pages 9-18.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:88:y:2007:i:1-3:p:34-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.