IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v10y2021i3p126.html
   My bibliography  Save this article

Compound Archimedean Copulas

Author

Listed:
  • Moshe Kelner
  • Zinoviy Landsman
  • Udi E. Makov

Abstract

The copula function is an effective and elegant tool useful for modeling dependence between random variables. Among the many families of this function, one of the most prominent family of copula is the Archimedean family, which has its unique structure and features. Most of the copula functions in this family have only a single dependence parameter which limits the scope of the dependence structure. In this paper we modify the generator of Archimedean copulas in a way which maintains membership in the family while increasing the number of dependence parameters and, consequently, creating new copulas having more flexible dependence structure.

Suggested Citation

  • Moshe Kelner & Zinoviy Landsman & Udi E. Makov, 2021. "Compound Archimedean Copulas," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 126-126, June.
  • Handle: RePEc:ibn:ijspjl:v:10:y:2021:i:3:p:126
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/download/0/0/45156/47853
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/view/0/45156
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Fabrizio Durante & José Quesada-Molina & Carlo Sempi, 2007. "A Generalization of the Archimedean Class of Bivariate Copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 487-498, September.
    3. David A. Hennessy & Harvey E. Lapan, 2002. "The Use of Archimedean Copulas to Model Portfolio Allocations," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 143-154, April.
    4. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    5. Steven Abrams & Paul Janssen & Jan Swanepoel & Noël Veraverbeke, 2020. "Nonparametric estimation of the cross ratio function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 771-801, June.
    6. Xie, Jiehua & Lin, Feng & Yang, Jingping, 2017. "On a generalization of Archimedean copula family," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 121-129.
    7. Joe, Harry & Hu, Taizhong, 1996. "Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 240-265, May.
    8. Patricia Mariela Morillas, 2005. "A method to obtain new copulas from a given one," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(2), pages 169-184, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moshe Kelner & Zinoviy Landsman & Udi E. Makov, 2022. "Probabilistic Peak Demand Estimation Using Members of the Clayton Generalized Gamma Copula Family," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Moshe Kelner & Zinoviy Landsman & Udi E. Makov, 2021. "Fitting Compound Archimedean Copulas to Data for Modeling Electricity Demand," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(5), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Jiehua & Lin, Feng & Yang, Jingping, 2017. "On a generalization of Archimedean copula family," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 121-129.
    2. Mesfioui, Mhamed & Quessy, Jean-François, 2008. "Dependence structure of conditional Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 372-385, March.
    3. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    4. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre & Veilleux, Déry, 2018. "Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 53-71.
    5. Sepanski, Jungsywan H., 2020. "A note on distortion effects on the strength of bivariate copula tail dependence," Statistics & Probability Letters, Elsevier, vol. 166(C).
    6. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.
    7. Donatien Hainaut & Renaud MacGilchrist, 2012. "Strategic asset allocation with switching dependence," Annals of Finance, Springer, vol. 8(1), pages 75-96, February.
    8. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    9. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    10. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 62-87.
    11. Corina Constantinescu & Suhang Dai & Weihong Ni & Zbigniew Palmowski, 2016. "Ruin Probabilities with Dependence on the Number of Claims within a Fixed Time Window," Risks, MDPI, vol. 4(2), pages 1-23, June.
    12. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    13. Roger J. Jiao & Feng Zhou & Chih-Hsing Chu, 2017. "Decision theoretic modeling of affective and cognitive needs for product experience engineering: key issues and a conceptual framework," Journal of Intelligent Manufacturing, Springer, vol. 28(7), pages 1755-1767, October.
    14. repec:hal:wpaper:hal-00746251 is not listed on IDEAS
    15. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    16. Fontanari Andrea & Cirillo Pasquale & Oosterlee Cornelis W., 2020. "Lorenz-generated bivariate Archimedean copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 186-209, January.
    17. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    18. Murray D. Smith, 2005. "Using Copulas to Model Switching Regimes with an Application to Child Labour," The Economic Record, The Economic Society of Australia, vol. 81(s1), pages 47-57, August.
    19. Dominique Guegan & Bertrand Hassani, 2011. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Documents de travail du Centre d'Economie de la Sorbonne 11017rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2012.
    20. Emilio Gómez-Déniz & Jorge V. Pérez-Rodríguez & Simón Sosvilla-Rivero, 2022. "Analyzing How the Social Security Reserve Fund in Spain Affects the Sustainability of the Pension System," Risks, MDPI, vol. 10(6), pages 1-17, June.
    21. Constantinescu, Corina & Hashorva, Enkelejd & Ji, Lanpeng, 2011. "Archimedean copulas in finite and infinite dimensions—with application to ruin problems," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 487-495.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:10:y:2021:i:3:p:126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.