IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v8y2020i1p186-209n11.html
   My bibliography  Save this article

Lorenz-generated bivariate Archimedean copulas

Author

Listed:
  • Fontanari Andrea

    (Applied Probability Group, EEMCS Faculty, Delft University of Technology, Building 28, Van Mourik Broekmanweg 6, 2628 XE Delft, TheNetherlands, Phone: +31.152.782.589)

  • Cirillo Pasquale

    (M Open Forecasting Center and Institute For the Future, University of Nicosia)

  • Oosterlee Cornelis W.

    (Numerical Analysis, DIAM, Delft University of Technology, Mekelweg 4, 2628 CD Delft, the Netherland)

Abstract

A novel generating mechanism for non-strict bivariate Archimedean copulas via the Lorenz curve of a non-negative random variable is proposed. Lorenz curves have been extensively studied in economics and statistics to characterize wealth inequality and tail risk. In this paper, these curves are seen as integral transforms generating increasing convex functions in the unit square. Many of the properties of these “Lorenz copulas”, from tail dependence and stochastic ordering, to their Kendall distribution function and the size of the singular part, depend on simple features of the random variable associated to the generating Lorenz curve. For instance, by selecting random variables with a lower bound at zero it is possible to create copulas with asymptotic upper tail dependence. An “alchemy” of Lorenz curves that can be used as general framework to build multiparametric families of copulas is also discussed.

Suggested Citation

  • Fontanari Andrea & Cirillo Pasquale & Oosterlee Cornelis W., 2020. "Lorenz-generated bivariate Archimedean copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 186-209, January.
  • Handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:186-209:n:11
    DOI: 10.1515/demo-2020-0011
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2020-0011
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2020-0011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shalit, Haim & Yitzhaki, Shlomo, 1984. "Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets," Journal of Finance, American Finance Association, vol. 39(5), pages 1449-1468, December.
    2. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    3. Nelsen, Roger B. & Quesada-Molina, José Juan & Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2003. "Kendall distribution functions," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 263-268, November.
    4. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    5. Sandra König & Hannes Kazianka & Jürgen Pilz & Johannes Temme, 2015. "Estimation of nonstrict Archimedean copulas and its application to quantum networks," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(4), pages 464-482, July.
    6. Fontanari, Andrea & Cirillo, Pasquale & Oosterlee, Cornelis W., 2018. "From Concentration Profiles to Concentration Maps. New tools for the study of loss distributions," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 13-29.
    7. Haim Shalit & Shlomo Yitzhaki, 2005. "The Mean‐Gini Efficient Portfolio Frontier," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(1), pages 59-75, March.
    8. Eliazar, Iddo & Cohen, Morrel H., 2014. "Hierarchical socioeconomic fractality: The rich, the poor, and the middle-class," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 30-40.
    9. José María Sarabia, 2008. "Parametric Lorenz Curves: Models and Applications," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 9, pages 167-190, Springer.
    10. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    11. Mehran, Farhad, 1976. "Linear Measures of Income Inequality," Econometrica, Econometric Society, vol. 44(4), pages 805-809, July.
    12. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    13. Muliere, Pietro & Scarsini, Marco, 1989. "A note on stochastic dominance and inequality measures," Journal of Economic Theory, Elsevier, vol. 49(2), pages 314-323, December.
    14. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    15. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fontanari Andrea & Cirillo Pasquale & Oosterlee Cornelis W., 2020. "Lorenz-generated bivariate Archimedean copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 186-209, January.
    2. Francesco Andreoli & Claudio Zoli, 2020. "From unidimensional to multidimensional inequality: a review," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 5-42, April.
    3. Claudio Zoli, 2002. "Inverse stochastic dominance, inequality measurement and Gini indices," Journal of Economics, Springer, vol. 77(1), pages 119-161, December.
    4. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
    5. Miguel Sordo & Jorge Navarro & José Sarabia, 2014. "Distorted Lorenz curves: models and comparisons," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 761-780, April.
    6. Doron Nisani & Amit Shelef, 2021. "A statistical analysis of investor preferences for portfolio selection," Empirical Economics, Springer, vol. 61(4), pages 1883-1915, October.
    7. Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
    8. Fabio Maccheroni & Pietro Muliere & Claudio Zoli, 2005. "Inverse stochastic orders and generalized Gini functionals," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 529-559.
    9. Ida Petrillo, 2017. "Ranking income distributions: a rank-dependent and needs-based approach," SERIES 03-2017, Dipartimento di Economia e Finanza - Università degli Studi di Bari "Aldo Moro", revised Jul 2017.
    10. Francesca Greselin & Ričardas Zitikis, 2018. "From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure of Risk: A Modeller’s Perspective," Econometrics, MDPI, vol. 6(1), pages 1-20, January.
    11. Sarabia, José María, 2008. "A general definition of the Leimkuhler curve," Journal of Informetrics, Elsevier, vol. 2(2), pages 156-163.
    12. Rolf Aaberge & Magne Mogstad, 2011. "Robust inequality comparisons," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 9(3), pages 353-371, September.
    13. Rolf Aaberge, 2009. "Ranking intersecting Lorenz curves," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 235-259, August.
    14. W. Henry Chiu, 2021. "Intersecting Lorenz curves and aversion to inverse downside inequality," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(3), pages 487-508, April.
    15. Doron Nisani, 2019. "Ranking Investments Using the Lorenz Curve," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 1-9, March.
    16. Edwin Fourrier-Nicolaï & Michel Lubrano, 2021. "Bayesian Inference for Parametric Growth Incidence Curves," Research on Economic Inequality, in: Research on Economic Inequality: Poverty, Inequality and Shocks, volume 29, pages 31-55, Emerald Group Publishing Limited.
    17. Melanie Krause, 2014. "Parametric Lorenz Curves and the Modality of the Income Density Function," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 905-929, December.
    18. ANDREOLI Francesco & HAVNES Tarjei & LEFRANC Arnaud, 2014. "Equalization of opportunity: Definitions, implementable conditions and application to early-childhood policy evaluation," LISER Working Paper Series 2014-12, Luxembourg Institute of Socio-Economic Research (LISER).
    19. Sarabia Alegría, J.M & Pascual Sáez, Marta, 2001. "Rankings de distribuciones de renta basados en curvas de Lorenz ordenadas: un estudio empírico1," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 19, pages 151-169, Diciembre.
    20. José María Sarabia & Vanesa Jorda, 2020. "Lorenz Surfaces Based on the Sarmanov–Lee Distribution with Applications to Multidimensional Inequality in Well-Being," Mathematics, MDPI, vol. 8(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:186-209:n:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.