IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5320686.html
   My bibliography  Save this article

Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices

Author

Listed:
  • Dong-Rui Chen
  • Chuang Liu
  • Yi-Cheng Zhang
  • Zi-Ke Zhang

Abstract

Understanding and predicting extreme turning points in the financial market, such as financial bubbles and crashes, has attracted much attention in recent years. Experimental observations of the superexponential increase of prices before crashes indicate the predictability of financial extremes. In this study, we aim to forecast extreme events in the stock market using 19-year time-series data (January 2000–December 2018) of the financial market, covering 12 kinds of worldwide stock indices. In addition, we propose an extremes indicator through the network, which is constructed from the price time series using a weighted visual graph algorithm. Experimental results on 12 stock indices show that the proposed indicators can predict financial extremes very well.

Suggested Citation

  • Dong-Rui Chen & Chuang Liu & Yi-Cheng Zhang & Zi-Ke Zhang, 2019. "Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices," Complexity, Hindawi, vol. 2019, pages 1-17, October.
  • Handle: RePEc:hin:complx:5320686
    DOI: 10.1155/2019/5320686
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/5320686.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/5320686.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/5320686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Rong & Ashuri, Baabak & Shyr, Yu & Deng, Yong, 2018. "Forecasting Construction Cost Index based on visibility graph: A network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 239-252.
    2. Sornette, Didier & Zhou, Wei-Xing, 2006. "Predictability of large future changes in major financial indices," International Journal of Forecasting, Elsevier, vol. 22(1), pages 153-168.
    3. Wanfeng Yan & Edgar van Tuyll van Serooskerken, 2015. "Forecasting Financial Extremes: A Network Degree Measure of Super-exponential Growth," Papers 1505.04060, arXiv.org.
    4. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    5. Liu, Chuang & Zhou, Wei-Xing & Yuan, Wei-Kang, 2010. "Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2675-2681.
    6. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    7. Rong Zhang & Baabak Ashuri & Yong Deng, 2017. "A novel method for forecasting time series based on fuzzy logic and visibility graph," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 759-783, December.
    8. Wang, Minggang & Xu, Hua & Tian, Lixin & Eugene Stanley, H., 2018. "Degree distributions and motif profiles of limited penetrable horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 620-634.
    9. Mutua Stephen & Changgui Gu & Huijie Yang, 2015. "Visibility Graph Based Time Series Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    10. Vamvakaris, Michail D. & Pantelous, Athanasios A. & Zuev, Konstantin M., 2018. "Time series analysis of S&P 500 index: A horizontal visibility graph approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 41-51.
    11. Yue Dong & Jiepeng Wang & Tingqiang Chen, 2019. "Price Linkage Rumors in the Stock Market and Investor Risk Contagion on Bilayer-Coupled Networks," Complexity, Hindawi, vol. 2019, pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanfeng Yan & Edgar van Tuyll van Serooskerken, 2015. "Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-15, September.
    2. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    3. Brée, David S. & Joseph, Nathan Lael, 2013. "Testing for financial crashes using the Log Periodic Power Law model," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 287-297.
    4. Li Lin & Didier Sornette, 2015. ""Speculative Influence Network" during financial bubbles: application to Chinese Stock Markets," Papers 1510.08162, arXiv.org.
    5. Eder Lucio Fonseca & Fernando F. Ferreira & Paulsamy Muruganandam & Hilda A. Cerdeira, 2012. "Identifying financial crises in real time," Papers 1204.3136, arXiv.org, revised Nov 2012.
    6. John Fry, 2014. "Bubbles, shocks and elementary technical trading strategies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(1), pages 1-13, January.
    7. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
    8. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    9. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    10. Vladimir Filimonov & Didier Sornette, "undated". "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Working Papers ETH-RC-11-002, ETH Zurich, Chair of Systems Design.
    11. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    12. Li, Chong, 2017. "Log-periodic view on critical dates of the Chinese stock market bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 305-311.
    13. Vladimir Filimonov & Didier Sornette, 2011. "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Papers 1108.0099, arXiv.org, revised Jun 2013.
    14. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    15. Mondal, Mitali & Mondal, Arindam & Mondal, Joyati & Patra, Kanchan Kumar & Deb, Argha & Ghosh, Dipak, 2018. "Evidence of centrality dependent fractal behavior in high energy heavy ion interactions: Hint of two different sources," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 230-237.
    16. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2019. "Visibility graph analysis of economy policy uncertainty indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    17. Yan, Wanfeng & Woodard, Ryan & Sornette, Didier, 2012. "Diagnosis and prediction of rebounds in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1361-1380.
    18. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    19. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2017. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. Part 2," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 45, pages 5-28.
    20. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5320686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.