IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3941847.html
   My bibliography  Save this article

An Approach to Interval-Valued Hesitant Fuzzy Multiattribute Group Decision Making Based on the Generalized Shapley-Choquet Integral

Author

Listed:
  • Lifei Zhang
  • Fanyong Meng

Abstract

The purpose of this paper is to develop an approach to multiattribute group decision making under interval-valued hesitant fuzzy environment. To do this, this paper defines some new operations on interval-valued hesitant fuzzy elements, which eliminate the disadvantages of the existing operations. Considering the fact that elements in a set may be interdependent, two generalized interval-valued hesitant fuzzy operators based on the generalized Shapley function and the Choquet integral are defined. Then, some models for calculating the optimal fuzzy measures on the expert set and the ordered position set are established. Because fuzzy measures are defined on the power set, it makes the problem exponentially complex. To simplify the complexity of solving a fuzzy measure, models for the optimal 2-additive measures are constructed. Finally, an investment problem is offered to show the practicality and efficiency of the new method.

Suggested Citation

  • Lifei Zhang & Fanyong Meng, 2018. "An Approach to Interval-Valued Hesitant Fuzzy Multiattribute Group Decision Making Based on the Generalized Shapley-Choquet Integral," Complexity, Hindawi, vol. 2018, pages 1-19, June.
  • Handle: RePEc:hin:complx:3941847
    DOI: 10.1155/2018/3941847
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/3941847.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/3941847.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/3941847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Ting-Yu & Chang, Chien-Hung & Rachel Lu, Jui-fen, 2013. "The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making," European Journal of Operational Research, Elsevier, vol. 226(3), pages 615-625.
    2. Meimei Xia & Zeshui Xu & Na Chen, 2013. "Some Hesitant Fuzzy Aggregation Operators with Their Application in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(2), pages 259-279, March.
    3. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miin-Shen Yang & Zahid Hussain, 2018. "Fuzzy Entropy for Pythagorean Fuzzy Sets with Application to Multicriterion Decision Making," Complexity, Hindawi, vol. 2018, pages 1-14, November.
    2. Mingwei Lin & Jiuhan Wei & Zeshui Xu & Riqing Chen, 2018. "Multiattribute Group Decision-Making Based on Linguistic Pythagorean Fuzzy Interaction Partitioned Bonferroni Mean Aggregation Operators," Complexity, Hindawi, vol. 2018, pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Bingsheng & Shen, Yinghua & Zhang, Wei & Chen, Xiaohong & Wang, Xueqing, 2015. "An interval-valued intuitionistic fuzzy principal component analysis model-based method for complex multi-attribute large-group decision-making," European Journal of Operational Research, Elsevier, vol. 245(1), pages 209-225.
    2. Michel Grabisch, 2015. "Fuzzy Measures and Integrals: Recent Developments," Post-Print hal-01302377, HAL.
    3. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    4. Christophe Labreuche & Michel Grabisch, 2016. "A comparison of the GAI model and the Choquet integral with respect to a k-ary capacity," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01277825, HAL.
    5. Mi Jung Son & Jin Han Park & Ka Hyun Ko, 2019. "Some Hesitant Fuzzy Hamacher Power-Aggregation Operators for Multiple-Attribute Decision-Making," Mathematics, MDPI, vol. 7(7), pages 1-33, July.
    6. Grabisch, Michel & Labreuche, Christophe & Vansnick, Jean-Claude, 2003. "On the extension of pseudo-Boolean functions for the aggregation of interacting criteria," European Journal of Operational Research, Elsevier, vol. 148(1), pages 28-47, July.
    7. Mosmans, Alain & Praet, Jean-Claude & Dumont, Christophe, 2002. "A decision support system for the budgeting of the Belgian health care system," European Journal of Operational Research, Elsevier, vol. 139(2), pages 449-460, June.
    8. Grabisch, Michel & Labreuche, Christophe, 2018. "Monotone decomposition of 2-additive Generalized Additive Independence models," Mathematical Social Sciences, Elsevier, vol. 92(C), pages 64-73.
    9. Barnett, William A. & Han, Qing & Zhang, Jianbo, 2021. "Monetary services aggregation under uncertainty: A behavioral economics extension using Choquet expectation," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 437-447.
    10. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    11. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2015. "Generalized analytic network process," European Journal of Operational Research, Elsevier, vol. 244(1), pages 277-288.
    12. Anath Rau Krishnan & Siti Nur Aqilah & Maznah Mat Kasim & Engku Muhammad Nazri & Abdul Kamal Char, 2017. "A revised procedure to identify λ 0-measure values for applying Choquet integral in solving multi-attribute decision problems," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 637-650, September.
    13. Tiejun Cheng & Qianli Xu & Fengping Wu, 2017. "Research on the adaptability evaluation model for emergency response plan based on 2-tuple linguistic," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 954-960, November.
    14. Wang, Chun-Hsien & Lu, Iuan-Yuan & Chen, Chin-Bein, 2010. "Integrating hierarchical balanced scorecard with non-additive fuzzy integral for evaluating high technology firm performance," International Journal of Production Economics, Elsevier, vol. 128(1), pages 413-426, November.
    15. Christophe Labreuche, 2018. "An axiomatization of the Choquet integral in the context of multiple criteria decision making without any commensurability assumption," Annals of Operations Research, Springer, vol. 271(2), pages 701-735, December.
    16. F. Huédé & M. Grabisch & C. Labreuche & P. Savéant, 2006. "MCS—A new algorithm for multicriteria optimisation in constraint programming," Annals of Operations Research, Springer, vol. 147(1), pages 143-174, October.
    17. Arunodaya Raj Mishra & Pratibha Rani & Raghunathan Krishankumar & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Kattur S. Ravichandran, 2021. "A Hesitant Fuzzy Combined Compromise Solution Framework-Based on Discrimination Measure for Ranking Sustainable Third-Party Reverse Logistic Providers," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    18. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    19. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    20. Labreuche, Christophe & Grabisch, Michel, 2006. "Generalized Choquet-like aggregation functions for handling bipolar scales," European Journal of Operational Research, Elsevier, vol. 172(3), pages 931-955, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3941847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.