IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i7p1290-d105691.html
   My bibliography  Save this article

An Explanatory Model Approach for the Spatial Distribution of Free-Floating Carsharing Bookings: A Case-Study of German Cities

Author

Listed:
  • Johannes Müller

    (Institute for Traffic, Transport and Regional Planning, University of the Federal Armed Forces Munich, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany)

  • Gonçalo Homem de Almeida Correia

    (Department of Transport & Planning, TU Delft, Stevinweg 1, 2628 CN Delft, The Netherlands)

  • Klaus Bogenberger

    (Institute for Traffic, Transport and Regional Planning, University of the Federal Armed Forces Munich, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany)

Abstract

When the first free-floating carsharing operators launched their business, they did not know if it would be profitable. They often started in highly populated cities without performing extensive target group analysis, and were less concerned about fleet management. Usually, there are two main datasets that can be used to find areas that would have a high demand for free-floating carsharing: booking data, for measuring the actual demand; and land use and census data for describing the activities performed in different areas in a city. In this paper, we aim to use this information to help predict the demand of free-floating carsharing systems. We use booking data provided by DriveNow for Berlin in 2014 and contextual information about the type of activity each neighborhood has. Using Berlin as a case study, we apply a negative binomial statistical model to explain the number of bookings. From the results, we conclude that free-floating carsharing is predominantly successful in areas with more affluent citizens who are open to trying new and sustainable technologies. Other important determinants that result in a high number of carsharing bookings are the area’s centrality and parking lot availability. The statistical model for Berlin was then transferred to Munich and Cologne, two other cities in Germany with similar population sizes. A comparison between the estimated demand categories and actual bookings shows satisfying results, but also non-negligible local conditions influencing the spatial demand for bookings.

Suggested Citation

  • Johannes Müller & Gonçalo Homem de Almeida Correia & Klaus Bogenberger, 2017. "An Explanatory Model Approach for the Spatial Distribution of Free-Floating Carsharing Bookings: A Case-Study of German Cities," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1290-:d:105691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/7/1290/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/7/1290/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clara Benevolo & Renata Paola Dameri & Beatrice D’Auria, 2016. "Smart Mobility in Smart City," Lecture Notes in Information Systems and Organization, in: Teresina Torre & Alessio Maria Braccini & Riccardo Spinelli (ed.), Empowering Organizations, edition 1, pages 13-28, Springer.
    2. Stillwater, Tai & Mokhtarian, Patricia L & Shaheen, Susan, 2008. "Carsharing and the Built Environment: A GIS-Based Study of One U.S. Operator," Institute of Transportation Studies, Working Paper Series qt2wj7q6cm, Institute of Transportation Studies, UC Davis.
    3. Junhee Kang & Keeyeon Hwang & Sungjin Park, 2016. "Finding Factors that Influence Carsharing Usage: Case Study in Seoul," Sustainability, MDPI, vol. 8(8), pages 1-12, July.
    4. Correia, Gonçalo Homem de Almeida & Antunes, António Pais, 2012. "Optimization approach to depot location and trip selection in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 233-247.
    5. Francesco Pinna & Francesca Masala & Chiara Garau, 2017. "Urban Policies and Mobility Trends in Italian Smart Cities," Sustainability, MDPI, vol. 9(4), pages 1-21, March.
    6. Gonçalo Homem de Almeida Correia & João de Abreu e Silva & José Manuel Viegas, 2013. "Using latent attitudinal variables estimated through a structural equations model for understanding carpooling propensity," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(6), pages 499-519, August.
    7. Barnett, E. & Halverson, J., 2001. "Local increases in coronary heart disease mortality among Blacks and Whites in the United States, 1985-1995," American Journal of Public Health, American Public Health Association, vol. 91(9), pages 1499-1506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Ampudia-Renuncio & Begoña Guirao & Rafael Molina-Sanchez & Luís Bragança, 2020. "Electric Free-Floating Carsharing for Sustainable Cities: Characterization of Frequent Trip Profiles Using Acquired Rental Data," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    2. Pan, Alexandra Q. & Martin, Elliot W. & Shaheen, Susan A., 2022. "Is access enough? A spatial and demographic analysis of one-way carsharing policies and practice," Transport Policy, Elsevier, vol. 127(C), pages 103-115.
    3. Cantelmo, Guido & Amini, Roja Ezzati & Monteiro, Mayara Moraes & Frenkel, Amnon & Lerner, Ofer & Tavory, Sharon Shoshany & Galtzur, Ayelet & Kamargianni, Maria & Shiftan, Yoram & Behrischi, Christiane, 2022. "Aligning users’ and stakeholders’ needs: How incentives can reshape the carsharing market," Transport Policy, Elsevier, vol. 126(C), pages 306-326.
    4. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    5. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    6. Soppert, Matthias & Steinhardt, Claudius & Müller, Christian & Gönsch, Jochen & Bhogale, Prasanna M., 2023. "Matching functions for free-floating shared mobility system optimization to capture maximum walking distances," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1194-1214.
    7. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    2. Tanja Manders & Elke Klaassen, 2019. "Unpacking the Smart Mobility Concept in the Dutch Context Based on a Text Mining Approach," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    3. Dastan Bamwesigye & Petra Hlavackova, 2019. "Analysis of Sustainable Transport for Smart Cities," Sustainability, MDPI, vol. 11(7), pages 1-20, April.
    4. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.
    5. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    6. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    7. Nielsen, Jesper Riber & Hovmøller, Harald & Blyth, Pascale-L. & Sovacool, Benjamin K., 2015. "Of “white crows” and “cash savers:” A qualitative study of travel behavior and perceptions of ridesharing in Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 113-123.
    8. Anthea van der Hoogen & Ifeoluwapo Fashoro & Andre P. Calitz & Lamla Luke, 2024. "A Digital Transformation Framework for Smart Municipalities," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    9. Mengwei Chen & Yilin Sun & E Owen D Waygood & Jincheng Yu & Kai Zhu, 2022. "User characteristics and service satisfaction of car sharing systems: Evidence from Hangzhou, China," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-16, February.
    10. Terrien, Clara & Maniak, Rémi & Chen, Bo & Shaheen, Susan, 2016. "Good Practices for Advancing Urban Mobility Innovation: A Case Study of One-Way Carsharing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt53z3h2gt, Institute of Transportation Studies, UC Berkeley.
    11. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    12. Philipp Ströhle & Christoph M. Flath & Johannes Gärttner, 2019. "Leveraging Customer Flexibility for Car-Sharing Fleet Optimization," Service Science, INFORMS, vol. 53(1), pages 42-61, February.
    13. Mário Meireles & Paulo J. G. Ribeiro, 2020. "Digital Platform/Mobile App to Boost Cycling for the Promotion of Sustainable Mobility in Mid-Sized Starter Cycling Cities," Sustainability, MDPI, vol. 12(5), pages 1-27, March.
    14. Susan Shaheen & Nelson Chan & Helen Micheaux, 2015. "One-way carsharing’s evolution and operator perspectives from the Americas," Transportation, Springer, vol. 42(3), pages 519-536, May.
    15. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    16. Lambros Mitropoulos & Annie Kortsari & Emy Apostolopoulou & Georgia Ayfantopoulou & Alexandros Deloukas, 2023. "Multimodal Traveling with Rail and Ride-Sharing: Lessons Learned during Planning and Demonstrating a Pilot Study," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    17. Wu, Peng, 2019. "Which battery-charging technology and insurance contract is preferred in the electric vehicle sharing business?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 537-548.
    18. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.
    19. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    20. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1290-:d:105691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.