IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i8p796-d75932.html
   My bibliography  Save this article

Comprehensive Benefit Evaluation of the Power Distribution Network Planning Project Based on Improved IAHP and Multi-Level Extension Assessment Method

Author

Listed:
  • Qunli Wu

    (Department of Economics and Management, North China Electric Power University, Baoding 071003, China)

  • Chenyang Peng

    (Department of Economics and Management, North China Electric Power University, Baoding 071003, China)

Abstract

Reasonable distribution network planning is an essential prerequisite of the economics and security of the future power grid. The comprehensive benefit evaluation of a distribution network planning project can make significant contributions towards guiding decisions during the planning scheme, the optimization of the distribution network structure, and the rational use of resources. In this paper, in light of the characteristics of the power distribution network, the comprehensive benefit evaluation index system is constructed considering the influencing factors of technical benefit, economic benefit, and social benefit. To eliminate the influence of subjective factors on the evaluation effects and the uncertainty of the influencing factors effectively, the improved interval analytic hierarchy process is employed to calculate the index weights more simply. Moreover, based on the traditional single-factor extension evaluation, this study proposes a multi-level extension assessment model to evaluate the comprehensive benefit of the power distribution network planning project. The model can not only identify the key factors that affect the evaluation effect of the power distribution network planning project, but also can predict the overall development trend of the project. Finally, using a specific urban distribution network planning project as an example, the findings indicate that the comprehensive benefit grade of this power distribution network planning project is “better” due to the benefit grade variable eigenvalue j * ∈ [ 3.33 , 3.418 ] ∈ [ 3 , 4 ] , and illustrates that the model is credible and practical to achieve the comprehensive benefit evaluation of the power distribution network planning project.

Suggested Citation

  • Qunli Wu & Chenyang Peng, 2016. "Comprehensive Benefit Evaluation of the Power Distribution Network Planning Project Based on Improved IAHP and Multi-Level Extension Assessment Method," Sustainability, MDPI, vol. 8(8), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:796-:d:75932
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/8/796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/8/796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao Bai & Shihong Miao & Pipei Zhang & Zhan Bai, 2015. "Reliability Evaluation of a Distribution Network with Microgrid Based on a Combined Power Generation System," Energies, MDPI, vol. 8(2), pages 1-26, February.
    2. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    3. Cunbin Li & Yunqi Liu & Shuke Li, 2016. "Risk Evaluation of Qinghai–Tibet Power Grid Interconnection Project for Sustainability," Sustainability, MDPI, vol. 8(1), pages 1-19, January.
    4. Dashti, Reza & Yousefi, Shaghayegh & Parsa Moghaddam, Mohsen, 2013. "Comprehensive efficiency evaluation model for electrical distribution system considering social and urban factors," Energy, Elsevier, vol. 60(C), pages 53-61.
    5. Xiaomin Xu & Dongxiao Niu & Jinpeng Qiu & Meiqiong Wu & Peng Wang & Wangyue Qian & Xiang Jin, 2016. "Comprehensive Evaluation of Coordination Development for Regional Power Grid and Renewable Energy Power Supply Based on Improved Matter Element Extension and TOPSIS Method for Sustainability," Sustainability, MDPI, vol. 8(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinpeng Liu & Yun Long & Xiaohua Song, 2017. "A Study on the Conduction Mechanism and Evaluation of the Comprehensive Efficiency of Photovoltaic Power Generation in China," Energies, MDPI, vol. 10(5), pages 1-22, May.
    2. Tian, Yuanyuan & Bai, Libiao & Wei, Lan & Zheng, Kanyin & Zhou, Xinyu, 2022. "Modeling for project portfolio benefit prediction via a GA-BP neural network," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Yu, Xuchao & Liang, Wei & Zhang, Laibin & Reniers, Genserik & Lu, Linlin, 2018. "Risk assessment of the maintenance process for onshore oil and gas transmission pipelines under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 50-67.
    4. Lin He & Chang-Ling Li & Qing-Yun Nie & Yan Men & Hai Shao & Jiang Zhu, 2017. "Core Abilities Evaluation Index System Exploration and Empirical Study on Distributed PV-Generation Projects," Energies, MDPI, vol. 10(12), pages 1-18, December.
    5. Yunqi Zhao & Jing Xiang & Jiaming Xu & Jinying Li & Ning Zhang, 2019. "Study on the Comprehensive Benefit Evaluation of Transnational Power Networking Projects Based on Multi-Project Stakeholder Perspectives," Energies, MDPI, vol. 12(2), pages 1-21, January.
    6. Jinying Li & Fan Wu & Jinchao Li & Yunqi Zhao, 2017. "Research on Risk Evaluation of Transnational Power Networking Projects Based on the Matter-Element Extension Theory and Granular Computing," Energies, MDPI, vol. 10(10), pages 1-19, October.
    7. Jinying Li & Jiaming Xu & Xin Tan, 2018. "Dynamic Comprehensive Benefit Evaluation of the Transnational Power Grid Interconnection Project Based on Combination Weighting and TOPSIS Grey Projection Method," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    8. Qingwu Gong & Jiazhi Lei & Hui Qiao & Jingjing Qiu, 2017. "Risk Assessment for Distribution Systems Using an Improved PEM-Based Method Considering Wind and Photovoltaic Power Distribution," Sustainability, MDPI, vol. 9(4), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuyu Li & Rongrong Li, 2019. "Evaluating Energy Sustainability Using the Pressure-State-Response and Improved Matter-Element Extension Models: Case Study of China," Sustainability, MDPI, vol. 11(1), pages 1-20, January.
    2. Wenyin Yang & Lin Liu & Xiaobao Yu, 2017. "Evaluating the Comprehensive Benefit of Group-Affiliated New Energy Power Generation Enterprises for Sustainability: Based on a Combined Technique of STBI and TOPSIS," Sustainability, MDPI, vol. 10(1), pages 1-22, December.
    3. Quan Xiao & Shanshan Wan & Fucai Lu & Shun Li, 2019. "Risk Assessment for Engagement in Sharing Economy of Manufacturing Enterprises: A Matter–Element Extension Based Approach," Sustainability, MDPI, vol. 11(17), pages 1-29, September.
    4. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    5. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    6. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    7. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    8. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    9. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    10. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    11. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    12. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    13. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    14. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    15. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    16. Lilian. O. Iheukwumere-Esotu & Akilu Yunusa-Kaltungo, 2021. "Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    17. Alpana Agarwal & Divina Raghav, 2023. "Analysing Determinants of Employee Performance Based on Reverse Mentoring and Employer Branding Using Analytic Hierarchical Process," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(3), pages 343-358, August.
    18. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    19. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    20. Mou, W.M. & Wong, W.-K. & McAleer, M.J., 2018. "Financial Credit Risk and Core Enterprise Supply Chains," Econometric Institute Research Papers EI2018-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:796-:d:75932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.