IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i10p1054-d80975.html
   My bibliography  Save this article

Effect of Organic Potato Farming on Human and Environmental Health and Benefits from New Plant Breeding Techniques. Is It Only a Matter of Public Acceptance?

Author

Listed:
  • Daniela Pacifico

    (Council for Agricultural Research and Economics Analysis (CREA), Centre for Research on Industrial Crops, Via di Corticella, 133, 40128 Bologna, Italy)

  • Roberta Paris

    (Council for Agricultural Research and Economics Analysis (CREA), Centre for Research on Industrial Crops, Via di Corticella, 133, 40128 Bologna, Italy)

Abstract

Organic farming practices are commonly thought to reduce the environmental impact of agriculture and to preserve the naturalness of the products. Herein, we report the effect of crop management practices on nutritional and toxicological value of potato tubers. Comparative studies are often controversial and the results are dependent on genotype and methodological approach. Targeted analysis and “omics” strategies are discussed, pointing at the nutritional aspects and the corresponding biological and molecular processes involved. Organic farming supporters still do not accept the use of genetic modification to produce new varieties suited for organic agriculture and crop improvement by genetic engineering still sparks hot debate among various scientific and social factions whose major concern is the possible existence of unintended effects both on human and world health. In this context, the advent of “new plant breeding techniques” has reignited the discussion on genetic engineering and on the compatibility of the new technologies with an eco-friendly agriculture. Could cisgenic and genome-edited potatoes be new good options for organic agriculture? We discuss how these approaches can be used to address food security challenges and to overcome specific problems based on the biological characteristics of potato tubers, producing new varieties that can improve farmers’ profit with a lower impact on public opinion. However, political, ethical, and social fears will probably persist much longer, mainly in Italy, historically a fiercely anti-GM country with a European leadership in organic food production and export.

Suggested Citation

  • Daniela Pacifico & Roberta Paris, 2016. "Effect of Organic Potato Farming on Human and Environmental Health and Benefits from New Plant Breeding Techniques. Is It Only a Matter of Public Acceptance?," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1054-:d:80975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/10/1054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/10/1054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Pacifico & Chiara Onofri & Bruno Parisi & Paola Ostano & Giuseppe Mandolino, 2017. "Influence of Organic Farming on the Potato Transcriptome," Sustainability, MDPI, vol. 9(5), pages 1-20, May.
    2. Gilles Grolleau & Alain Marciano & Naoufel Mzoughi, 2021. "Scandals : a ‘reset button’ to drive change?," Post-Print hal-02921614, HAL.
    3. Gerhart U. Ryffel, 2017. "I Have a Dream: Organic Movements Include Gene Manipulation to Improve Sustainable Farming," Sustainability, MDPI, vol. 9(3), pages 1-9, March.
    4. Serena Mandolesi & Emilia Cubero Dudinskaya & Simona Naspetti & Francesco Solfanelli & Raffaele Zanoli, 2022. "Freedom of Choice—Organic Consumers’ Discourses on New Plant Breeding Techniques," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    5. Daniela Pacifico, 2018. "Upland Italian Potato Quality—A Perspective," Sustainability, MDPI, vol. 10(11), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    3. Kalaitzandonakes, Nicholas & Lusk, Jayson & Magnier, Alexandre, 2018. "The price of non-genetically modified (non-GM) food," Food Policy, Elsevier, vol. 78(C), pages 38-50.
    4. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    5. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    6. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    7. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    8. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    9. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    10. Rana Shahzad Noor & Fiaz Hussain & Muhammad Umar Farooq & Muhammad Umair, 2020. "Cost And Profitability Analysis Of Cherry Production: The Case Study Of District Quetta, Pakistan," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(2), pages 74-80, June.
    11. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    12. I. P. Sapinas & L. K. Abbott, 2021. "Soil Fertility Management Based on Certified Organic Agriculture Standards - a Review," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 9(2), pages 1-1, December.
    13. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    14. Khalid Butti Al Shamsi & Antonio Compagnoni & Giuseppe Timpanaro & Salvatore Luciano Cosentino & Paolo Guarnaccia, 2018. "A Sustainable Organic Production Model for “Food Sovereignty” in the United Arab Emirates and Sicily-Italy," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    15. ZaDarreyal Wiggins & Dilip Nandwani, 2021. "Innovations of Organic Agriculture, Challenges and Organic Certification in the United States," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 9(3), pages 1-50, December.
    16. Marek Zieliński & Wioletta Wrzaszcz & Jolanta Sobierajewska & Marcin Adamski, 2024. "Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
    17. Ming-Jie Sun & Ying Chao & Wei He & Xi-Rui Kang & Quan-Gang Yang & Hui Wang & Hong Pan & Yan-Hong Lou & Yu-Ping Zhuge, 2022. "Changes in Foxtail Millet ( Setaria italica L.) Yield, Quality, and Soil Microbiome after Replacing Chemical Nitrogen Fertilizers with Organic Fertilizers," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    18. Cecilia Bellora & Jean-Marc Bourgeon, 2014. "Agricultural Trade, Biodiversity Effects and Food Price Volatility," Working Papers hal-01052971, HAL.
    19. Kuo Ming Chu, 2018. "Mediating Influences of Attitude on Internal and External Factors Influencing Consumers’ Intention to Purchase Organic Foods in China," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    20. Lenore Newman & Robert Newell & Colin Dring & Alesandros Glaros & Evan Fraser & Zsofia Mendly-Zambo & Arthur Gill Green & Krishna Bahadur KC, 2023. "Agriculture for the Anthropocene: novel applications of technology and the future of food," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 613-627, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1054-:d:80975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.