IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3119-d1372461.html
   My bibliography  Save this article

Numerical Analysis of Air Supply Alternatives for Forced-Air Precooling of Agricultural Produce

Author

Listed:
  • Long Chen

    (Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
    National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China)

  • Wenzhi Wang

    (Tianjin Academy of Agricultural Sciences, Tianjin 300192, China)

  • Jiazheng Li

    (Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
    National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China)

  • Zhijun Zhang

    (Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
    National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China)

Abstract

Precooling agricultural produce is an intensive, energy-consuming process. To improve the efficiency of forced-air precooling and ultimately contribute to energy sustainability for postharvest storage of fresh produce, we designed three alternative air supply systems, simulated their cooling performances over a 96 h precooling process in a cold storage facility storing Chinese cabbages, and then compared their performances with a conventional design. All models were developed on a large scale on the basis of validated computational fluid dynamics models. The horizontal air supply scheme shortened the seven-eighths cooling time by 18.8%, and its maximum cooling rate increased by 19.7% compared to the conventional air supply scheme. The seven-eighths cooling time under another alternative design, the vertical air supply scheme, was 9.4% lower than the conventional, with the maximum cooling rate increasing by 10.5%. However, the maximum cooling rate of the last alternative design, the perforated ceiling air supply system, was 6.6% less than the conventional scheme, resulting in a 6.3% longer seven-eighths cooling time. The heterogeneity index of temperature implied that the horizontal air supply offered better overall cooling uniformity than the other designs, which can be attributed to its evenly distributed airflows and well-organized air movement paths, based on the combined analysis of temperature contours and air velocity contours at selected planes. Our findings are expected to provide practical guidelines for the refinement of the air supply system to improve its energy sustainability in forced-air precooling.

Suggested Citation

  • Long Chen & Wenzhi Wang & Jiazheng Li & Zhijun Zhang, 2024. "Numerical Analysis of Air Supply Alternatives for Forced-Air Precooling of Agricultural Produce," Sustainability, MDPI, vol. 16(8), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3119-:d:1372461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Chun-Jiang & Han, Jia-Wei & Yang, Xin-Ting & Qian, Jian-Ping & Fan, Bei-Lei, 2016. "A review of computational fluid dynamics for forced-air cooling process," Applied Energy, Elsevier, vol. 168(C), pages 314-331.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.
    2. Adhiyaman Ilangovan & João Curto & Pedro D. Gaspar & Pedro D. Silva & Nanci Alves, 2021. "CFD Modelling of the Thermal Performance of Fruit Packaging Boxes—Influence of Vent-Holes Design," Energies, MDPI, vol. 14(23), pages 1-14, November.
    3. Guangjun Yang & Xiaoxiao Li & Li Ding & Fahua Zhu & Zhigang Wang & Sheng Wang & Zhen Xu & Jingxin Xu & Pengxiang Qiu & Zhaobing Guo, 2019. "CFD Simulation of Pollutant Emission in a Natural Draft Dry Cooling Tower with Flue Gas Injection: Comparison between LES and RANS," Energies, MDPI, vol. 12(19), pages 1-21, September.
    4. Ahmad Nasser Eddine & Steven Duret & Jean Moureh, 2022. "Interactions between Package Design, Airflow, Heat and Mass Transfer, and Logistics in Cold Chain Facilities for Horticultural Products," Energies, MDPI, vol. 15(22), pages 1-35, November.
    5. Wu, Wentao & Beretta, Claudio & Cronje, Paul & Hellweg, Stefanie & Defraeye, Thijs, 2019. "Environmental trade-offs in fresh-fruit cold chains by combining virtual cold chains with life cycle assessment," Applied Energy, Elsevier, vol. 254(C).
    6. Fábio Leitão & Pedro D. Silva & Pedro D. Gaspar & Luís C. Pires & Diana Duarte, 2021. "Experimental Study of Thermal Performance of Different Fruit Packaging Box Designs," Energies, MDPI, vol. 14(12), pages 1-13, June.
    7. Chauhan, Amisha & Trembley, Jon & Wrobel, Luiz C. & Jouhara, Hussam, 2019. "Experimental and CFD validation of the thermal performance of a cryogenic batch freezer with the effect of loading," Energy, Elsevier, vol. 171(C), pages 77-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3119-:d:1372461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.