IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1521-d1337260.html
   My bibliography  Save this article

Integrating Firefly and Crow Algorithms for the Resilient Sizing and Siting of Renewable Distributed Generation Systems under Faulty Scenarios

Author

Listed:
  • Abdullrahman A. Al-Shamma’a

    (Electrical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia)

  • Hassan M. Hussein Farh

    (Electrical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia)

  • Khalil Alsharabi

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

This study aimed to optimize the sizing and allocation of renewable distributed generation (RDG) systems, with a focus on renewable sources, under N-1 faulty line conditions. The IEEE 30-bus power system benchmark served as a case study for us to analyze and enhance the reliability and quality of the power system in the presence of faults. The firefly algorithm (FFA) combined with the crow search (CS) optimizer was used to achieve optimal RDG sizing and allocation through solving the optimal power flow (OPF) under the most severe N-1 faulty line. The reason for hybridization lies in leveraging the global search capabilities of the CS optimizer for the sizing and allocation of RDGs and the local search proficiency of the FFA for OPF. Two severe N-1 faulty conditions—F27-29 and F27-30—were separately applied to the IEEE 30-bus distribution system. The most severe N-1 faulty line of these two faulty lines was F27-30, based on a severity ranking index including both the voltage deviation index and the overloading index. Three candidate buses, namely 27, 29, and 30, were considered in the optimization process. Our methodology incorporated techno-economic multi-objectives, encompassing overall costs, power losses, and voltage deviation. The optimizer can eliminate the impractical buses/solutions automatically while remaining the practical one. The results revealed that optimal RDG allocation at bus 30 effectively alleviated line overloading, ensuring compliance with the line flow limit, reducing costs, and enhancing voltage profiles, thereby improving system performance under N-1 faulty conditions compared to the equivalent case without RDGs.

Suggested Citation

  • Abdullrahman A. Al-Shamma’a & Hassan M. Hussein Farh & Khalil Alsharabi, 2024. "Integrating Firefly and Crow Algorithms for the Resilient Sizing and Siting of Renewable Distributed Generation Systems under Faulty Scenarios," Sustainability, MDPI, vol. 16(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1521-:d:1337260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
    2. Abdulaziz Alanazi & Tarek I. Alanazi, 2023. "Multi-Objective Framework for Optimal Placement of Distributed Generations and Switches in Reconfigurable Distribution Networks: An Improved Particle Swarm Optimization Approach," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    2. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    3. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    4. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    5. Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
    6. Chaduvula, Hemanth & Das, Debapriya, 2023. "Analysis of microgrid configuration with optimal power injection from grid using point estimate method embedded fuzzy-particle swarm optimization," Energy, Elsevier, vol. 282(C).
    7. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability," Applied Energy, Elsevier, vol. 113(C), pages 1162-1170.
    8. Laghari, J.A. & Mokhlis, H. & Karimi, M. & Bakar, A.H.A. & Mohamad, Hasmaini, 2015. "An islanding detection strategy for distribution network connected with hybrid DG resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 662-676.
    9. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    10. Emmanuel, Michael & Rayudu, Ramesh, 2017. "Evolution of dispatchable photovoltaic system integration with the electric power network for smart grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 207-224.
    11. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    12. Mohsin Shahzad & Ishtiaq Ahmad & Wolfgang Gawlik & Peter Palensky, 2016. "Load Concentration Factor Based Analytical Method for Optimal Placement of Multiple Distribution Generators for Loss Minimization and Voltage Profile Improvement," Energies, MDPI, vol. 9(4), pages 1-21, April.
    13. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    14. Gaigalis, Vygandas & Skema, Romualdas, 2015. "Analysis of the fuel and energy transition in Lithuanian industry and its sustainable development in 2005–2013 in compliance with the EU policy and strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 265-279.
    15. Jain, Sanjay & Kalambe, Shilpa & Agnihotri, Ganga & Mishra, Anuprita, 2017. "Distributed generation deployment: State-of-the-art of distribution system planning in sustainable era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 363-385.
    16. Li, Gengfeng & Bie, Zhaohong & Xie, Haipeng & Lin, Yanling, 2016. "Customer satisfaction based reliability evaluation of active distribution networks," Applied Energy, Elsevier, vol. 162(C), pages 1571-1578.
    17. Alturki, Mansoor & Khodaei, Amin & Paaso, Aleksi & Bahramirad, Shay, 2018. "Optimization-based distribution grid hosting capacity calculations," Applied Energy, Elsevier, vol. 219(C), pages 350-360.
    18. Su-Han Pyo & Tae-Hun Kim & Byeong-Hyeon An & Jae-Deok Park & Jang-Hyun Park & Myoung-Jin Lee & Tae-Sik Park, 2022. "Distributed Generation Based Virtual STATCOM Configuration and Control Method," Energies, MDPI, vol. 15(5), pages 1-17, February.
    19. Kabir, M.N. & Mishra, Y. & Ledwich, G. & Xu, Z. & Bansal, R.C., 2014. "Improving voltage profile of residential distribution systems using rooftop PVs and Battery Energy Storage systems," Applied Energy, Elsevier, vol. 134(C), pages 290-300.
    20. Sultana, U. & Khairuddin, Azhar B. & Mokhtar, A.S. & Zareen, N. & Sultana, Beenish, 2016. "Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system," Energy, Elsevier, vol. 111(C), pages 525-536.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1521-:d:1337260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.