IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1373-d1334408.html
   My bibliography  Save this article

A Dual-Stage Attention-Based Vehicle Speed Prediction Model Considering Driver Heterogeneity with Fuel Consumption and Emissions Analysis

Author

Listed:
  • Rongjun Cheng

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Qinyin Li

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Fuzhou Chen

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Baobin Miao

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

Abstract

With the development of intelligent transportation systems (ITSs), personalized driving systems are receiving more and more attention, and the development of advanced systems cannot be separated from the practical exploration of drivers’ heterogeneous driving behaviors. An important foundation for subsequent driver-targeted research is how to mine the key influencing factors that characterize drivers through real driving data and how to appropriately classify drivers as a whole. This study took heterogeneous drivers as the object, based on a dual-stage attention-based vehicle speed prediction model, and carried out research on the speed prediction of traffic flow and the impact of fuel consumption and emissions in the car-following state considering the heterogeneity of drivers. Specifically, first, Spearman’s correlation analysis and K-means clustering were used to classify different types of drivers. Then, speed predictions for different types of drivers were separated via the dual-stage attention-based encoder–decoder (DAED) model and the prediction results between models and drivers were compared. Finally, the heterogeneous drivers’ fuel consumption and emissions were further analyzed via the VT-micro model. The results show that the proposed speed prediction model can effectively discriminate the influences of heterogeneous drivers on the prediction model, and the aggressive type presents the best effect. In addition, from the experiments on traffic fuel consumption and emissions, it can be concluded that the timid driver is the friendliest to the environment. By researching individual drivers’ driving characteristics, this study may help sustainable development in traffic management.

Suggested Citation

  • Rongjun Cheng & Qinyin Li & Fuzhou Chen & Baobin Miao, 2024. "A Dual-Stage Attention-Based Vehicle Speed Prediction Model Considering Driver Heterogeneity with Fuel Consumption and Emissions Analysis," Sustainability, MDPI, vol. 16(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1373-:d:1334408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taylor, Jeffrey & Zhou, Xuesong & Rouphail, Nagui M. & Porter, Richard J., 2015. "Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time Warping approach," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 59-80.
    2. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    3. Dengfeng Zhao & Haiyang Li & Junjian Hou & Pengliang Gong & Yudong Zhong & Wenbin He & Zhijun Fu, 2023. "A Review of the Data-Driven Prediction Method of Vehicle Fuel Consumption," Energies, MDPI, vol. 16(14), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishi, Ryosuke, 2020. "Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    2. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    3. Li, Qinyin & Cheng, Rongjun & Ge, Hongxia, 2023. "Short-term vehicle speed prediction based on BiLSTM-GRU model considering driver heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    4. Liang Chen & Jiming Xie & Simin Wu & Fengxiang Guo & Zheng Chen & Wenqi Tan, 2021. "Validation of Vehicle Driving Simulator from Perspective of Velocity and Trajectory Based Driving Behavior under Curve Conditions," Energies, MDPI, vol. 14(24), pages 1-23, December.
    5. Ruru Xing & Yihan Zhang & Xiaoyu Cai & Jupeng Lu & Bo Peng & Tao Yang, 2023. "Vehicle-Trajectory Prediction Method for an Extra-Long Tunnel Based on Section Traffic Data," Sustainability, MDPI, vol. 15(8), pages 1-30, April.
    6. Nishi, Ryosuke & Watanabe, Takashi, 2022. "System-size dependence of a jam-absorption driving strategy to remove traffic jam caused by a sag under the presence of traffic instability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    7. Wei, Yuguang & Avcı, Cafer & Liu, Jiangtao & Belezamo, Baloka & Aydın, Nizamettin & Li, Pengfei(Taylor) & Zhou, Xuesong, 2017. "Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 102-129.
    8. Junjie Zhang & Can Yang & Jun Zhang & Haojie Ji, 2022. "Effect of Five Driver’s Behavior Characteristics on Car-Following Safety," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    9. Wang, Hong & Sun, Fubao & Liu, Fa & Wang, Tingting & Liu, Wenbin & Feng, Yao, 2023. "Reconstruction of the pan evaporation based on meteorological factors with machine learning method over China," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1373-:d:1334408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.