IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p94-d1304782.html
   My bibliography  Save this article

A Point-Interval Forecasting Method for Wind Speed Using Improved Wild Horse Optimization Algorithm and Ensemble Learning

Author

Listed:
  • Xiuting Guo

    (School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
    School of Science, Lanzhou University of Technology, Lanzhou 730050, China)

  • Changsheng Zhu

    (School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China)

  • Jie Hao

    (School of Electrical Engineering, Northwest Minzu University, Lanzhou 730030, China)

  • Lingjie Kong

    (School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730030, China)

  • Shengcai Zhang

    (School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China)

Abstract

With the implementation of the green development strategy and the “double carbon goal”, as an important energy for sustainable development, wind power has been widely researched and vigorously developed across the world. Wind speed prediction has a major impact on the grid dispatching of wind power connection. Most current studies only focus on the deterministic prediction of wind speed. However, the traditional deterministic forecast only provides the single wind speed prediction results and cannot meet the diverse demands of dispatchers. To bridge the gap, a wind speed point-interval forecasting method is proposed that utilizes empirical wavelet transform, an improved wild horse optimization algorithm, a multi-predictor, and improved kernel density estimation. This method decomposes the wind speed sequence into stationary subsequences through empirical wavelet transform, and then optimizes three basic learners with completely different learning mechanisms to form an ensemble model using the modified wild horse optimization algorithm. Finally, the uncertainty is analysed using an improved kernel density estimation. The datasets of three sites from America’s national renewable energy laboratory are used for comparison experiments with other models, and the predictions are discussed from different angles. The simulation results demonstrate that the model can produce high-precision deterministic results and high-quality probabilistic results. The reference information the model provides can be extremely valuable for scheduling operators.

Suggested Citation

  • Xiuting Guo & Changsheng Zhu & Jie Hao & Lingjie Kong & Shengcai Zhang, 2023. "A Point-Interval Forecasting Method for Wind Speed Using Improved Wild Horse Optimization Algorithm and Ensemble Learning," Sustainability, MDPI, vol. 16(1), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:94-:d:1304782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/94/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/94/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Hui & Chen, Chao, 2019. "Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction," Applied Energy, Elsevier, vol. 254(C).
    2. Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
    3. Zhang, Jinhua & Yan, Jie & Infield, David & Liu, Yongqian & Lien, Fue-sang, 2019. "Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model," Applied Energy, Elsevier, vol. 241(C), pages 229-244.
    4. Li, Jingrui & Wang, Jiyang & Li, Zhiwu, 2023. "A novel combined forecasting system based on advanced optimization algorithm - A study on optimal interval prediction of wind speed," Energy, Elsevier, vol. 264(C).
    5. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    6. Liu, Xin & Yang, Luoxiao & Zhang, Zijun, 2022. "The attention-assisted ordinary differential equation networks for short-term probabilistic wind power predictions," Applied Energy, Elsevier, vol. 324(C).
    7. Zhang, Wenyu & Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong, 2020. "Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting," Applied Energy, Elsevier, vol. 277(C).
    8. He, Yaoyao & Wang, Yun & Wang, Shuo & Yao, Xin, 2022. "A cooperative ensemble method for multistep wind speed probabilistic forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    10. Krishna Rayi, Vijaya & Mishra, S.P. & Naik, Jyotirmayee & Dash, P.K., 2022. "Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multistep wind power forecasting," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    3. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    4. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    5. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    6. Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
    7. Pan, Xiaoxin & Wang, Long & Wang, Zhongju & Huang, Chao, 2022. "Short-term wind speed forecasting based on spatial-temporal graph transformer networks," Energy, Elsevier, vol. 253(C).
    8. Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
    9. Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
    10. Ana Lagos & Joaquín E. Caicedo & Gustavo Coria & Andrés Romero Quete & Maximiliano Martínez & Gastón Suvire & Jesús Riquelme, 2022. "State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems," Energies, MDPI, vol. 15(18), pages 1-40, September.
    11. Yang, Qiuling & Deng, Changhong & Chang, Xiqiang, 2022. "Ultra-short-term / short-term wind speed prediction based on improved singular spectrum analysis," Renewable Energy, Elsevier, vol. 184(C), pages 36-44.
    12. Lu, Peng & Ye, Lin & Tang, Yong & Zhao, Yongning & Zhong, Wuzhi & Qu, Ying & Zhai, Bingxu, 2021. "Ultra-short-term combined prediction approach based on kernel function switch mechanism," Renewable Energy, Elsevier, vol. 164(C), pages 842-866.
    13. Yukun Wang & Aiying Zhao & Xiaoxue Wei & Ranran Li, 2023. "A Novel Ensemble Model Based on an Advanced Optimization Algorithm for Wind Speed Forecasting," Energies, MDPI, vol. 16(14), pages 1-19, July.
    14. Jinhua Zhang & Hui Li & Peng Cheng & Jie Yan, 2024. "Interpretable Wind Power Short-Term Power Prediction Model Using Deep Graph Attention Network," Energies, MDPI, vol. 17(2), pages 1-16, January.
    15. Liu, Hui & Yu, Chengqing & Wu, Haiping & Duan, Zhu & Yan, Guangxi, 2020. "A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting," Energy, Elsevier, vol. 202(C).
    16. Wang, Shuai & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2021. "A novel combined model for wind speed prediction – Combination of linear model, shallow neural networks, and deep learning approaches," Energy, Elsevier, vol. 234(C).
    17. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Li, Zhuo, 2021. "Feature extraction of meteorological factors for wind power prediction based on variable weight combined method," Renewable Energy, Elsevier, vol. 179(C), pages 1925-1939.
    18. Duan, Jikai & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Zuo, Hongchao & Bai, Yulong & Chen, Bolong, 2022. "A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error," Renewable Energy, Elsevier, vol. 200(C), pages 788-808.
    19. Shang, Zhihao & He, Zhaoshuang & Chen, Yao & Chen, Yanhua & Xu, MingLiang, 2022. "Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization," Energy, Elsevier, vol. 238(PC).
    20. Yang, Rui & Liu, Hui & Nikitas, Nikolaos & Duan, Zhu & Li, Yanfei & Li, Ye, 2022. "Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:94-:d:1304782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.