IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7468-d1138034.html
   My bibliography  Save this article

Sustainable Intensification of Cropping Systems under Conservation Agriculture Practices: Impact on Yield, Productivity and Profitability of Wheat

Author

Listed:
  • Arun Kumar

    (Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, India
    Department of Agronomy, Eternal University, Baru Sahib 173101, India)

  • Kulvir Singh Saini

    (Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, India)

  • Hemant Dasila

    (Department of Microbiology, Eternal University, Baru Sahib 173101, India)

  • Rakesh Kumar

    (Department of Agronomy, Eternal University, Baru Sahib 173101, India)

  • Kavita Devi

    (Department of Agronomy, Eternal University, Baru Sahib 173101, India)

  • Yashpal Singh Bisht

    (Department of Horticulture, Eternal University, Baru Sahib 173101, India)

  • Manish Yadav

    (Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India)

  • Shivani Kothiyal

    (Department of Climate Change and Agricultural Meteorology, Punjab Agricultural University, Ludhiana 141004, India)

  • Aaradhana Chilwal

    (Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, India
    Agricultural and Processed Food Products Export Development Authority, New Delhi 110016, India)

  • Damini Maithani

    (School of Biotechnology, IFTM University, Moradabad 244102, India)

  • Prashant Kaushik

    (Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain)

Abstract

The continuous rice–wheat cropping system in South Asia has caused irreversible environmental damage, raising concerns about the long-term sustainability of the region’s agricultural systems. To address this issue, farm experiments were conducted for two successive years (2019–20 and 2020–21) to assess the impact of different cropping systems under conservation agriculture (CA) practices on the yield, productivity, and profitability of wheat. Results showed that the highest grain yield of wheat was observed in scenarios Sc6, Sc4, and Sc2, which involved full CA permanent-bed soybean (PB)–permanent-bed wheat (PB)–permanent-bed summer moong (PB), full CA permanent-bed maize (PB)–permanent-bed wheat (PB)–permanent-bed summer moong (PB), and partial CA puddled transplanted rice–Happy Seeder wheat–zero-till summer moong (ZT). Additionally, the highest irrigation water productivity (IWP), wheat grain macronutrient uptake, net return, and benefit–cost ratio (B:C ratio) were recorded under Sc6, full CA permanent-bed soybean (PB)–permanent-bed wheat (PB)–permanent-bed summer moong (PB) compared to farmers’ practice puddled transplanted rice (PTR)–conventional-till wheat–summer moong (Sc1) during both years. The system productivity also increased in scenarios Sc2, Sc4, and Sc6 (by 9.72%, 9.65%, and 14.14% in the first year and 10.68%, 14.14%, and 15.55% in the second year) compared to Sc1—farmers’ practice puddled transplanted rice (PTR)–conventional-till wheat–summer moong, Sc3—farmers’ practice fresh-bed maize (FB)–conventional-till wheat–summer moong, and Sc5–farmers’ practice fresh-bed soybean (FB)–conventional-till wheat (CT)–summer moong. The findings suggest that the conservation agriculture soybean–wheat–summer moong (Sc6) on permanent-bed cropping systems with inclusion legumes can be a potential option to enhance yield attributes, productivity, and profitability, as well as the sustainability of natural resources in the region while decreasing environmental footprints.

Suggested Citation

  • Arun Kumar & Kulvir Singh Saini & Hemant Dasila & Rakesh Kumar & Kavita Devi & Yashpal Singh Bisht & Manish Yadav & Shivani Kothiyal & Aaradhana Chilwal & Damini Maithani & Prashant Kaushik, 2023. "Sustainable Intensification of Cropping Systems under Conservation Agriculture Practices: Impact on Yield, Productivity and Profitability of Wheat," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7468-:d:1138034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arun Kumar & Kulvir Singh Saini & Lalit Kumar Rolaniya & Love Kumar Singh & Prashant Kaushik, 2022. "Root System Architecture and Symbiotic Parameters of Summer Mung Bean ( Vigna Radiata ) under Different Conservation Agriculture Practices," Sustainability, MDPI, vol. 14(7), pages 1-13, March.
    2. Chakraborty, Debashis & Garg, R.N. & Tomar, R.K. & Singh, Ravender & Sharma, S.K. & Singh, R.K. & Trivedi, S.M. & Mittal, R.B. & Sharma, P.K. & Kamble, K.H., 2010. "Synthetic and organic mulching and nitrogen effect on winter wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 97(5), pages 738-748, May.
    3. Sidhu, H.S. & Jat, M.L. & Singh, Yadvinder & Sidhu, Ravneet Kaur & Gupta, Naveen & Singh, Parvinder & Singh, Pankaj & Jat, H.S. & Gerard, Bruno, 2019. "Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 216(C), pages 273-283.
    4. Li, Feng-Min & Wang, Ping & Wang, Jun & Xu, Jin-Zhang, 2004. "Effects of irrigation before sowing and plastic film mulching on yield and water uptake of spring wheat in semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 67(2), pages 77-88, June.
    5. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    6. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Mukherjee, A. & Sarkar, S. & Chakraborty, P.K., 2012. "Marginal analysis of water productivity function of tomato crop grown under different irrigation regimes and mulch managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 121-127.
    3. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    4. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    5. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    6. Bahi, Dhilanveer Teja Singh & Paavola, Jouni, 2023. "Liquid petroleum gas access and consumption expenditure: measuring energy poverty through wellbeing and gender equality in India," LSE Research Online Documents on Economics 120564, London School of Economics and Political Science, LSE Library.
    7. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2021. "Reflections on farmers’ social networks: a means for sustainable agricultural development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2973-3008, March.
    8. Shah, M., 2018. "Reforming India’s water governance to meet 21st century challenges: practical pathways to realizing the vision of the Mihir Shah Committee," IWMI Working Papers H049192, International Water Management Institute.
    9. Rajeev Kumar Gupta & Jagroop Kaur & Jasjit Singh Kang & Harmeet Singh & Sukhveer Kaur & Samy Sayed & Ahmed Gaber & Akbar Hossain, 2022. "Tillage in Combination with Rice Straw Retention in a Rice–Wheat System Improves the Productivity and Quality of Wheat Grain through Improving the Soil Physio-Chemical Properties," Land, MDPI, vol. 11(10), pages 1-18, September.
    10. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    11. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    12. Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
    13. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    14. Abdulaziz Alqahtani & Tom Sale & Michael J. Ronayne & Courtney Hemenway, 2021. "Demonstration of Sustainable Development of Groundwater through Aquifer Storage and Recovery (ASR)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 429-445, January.
    15. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    16. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    17. Massey, J.H. & Reba, M.L. & Adviento-Borbe, M.A. & Chiu, Y.L. & Payne, G.K., 2022. "Direct comparisons of four irrigation systems on a commercial rice farm: Irrigation water use efficiencies and water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    18. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    19. Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
    20. Qifeng Huang & Longhuan Wang & Binghao Jia & Xin Lai & Qing Peng, 2023. "Impact of Climate Change on the Spatio-Temporal Variation in Groundwater Storage in the Guangdong–Hong Kong–Macao Greater Bay Area," Sustainability, MDPI, vol. 15(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7468-:d:1138034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.