IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6833-d1126617.html
   My bibliography  Save this article

Location of Railway Emergency Rescue Spots Based on a Near-Full Covering Problem: From a Perspective of Diverse Scenarios

Author

Listed:
  • Huizhu Wang

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Jianqin Zhou

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

Abstract

The location of railway emergency rescue spots is facing diverse scenarios including the location of new facilities and optimization of existing layouts with limited or non-limited conditions. Generally there will be heavily redundant covering ability if all the edge demands on a network are fully covered. Here, we first proposed a near-full covering model to balance investment in the facility and the actual coverage rate, and successfully applied this model in the optimal location of railway emergency rescue spots under diverse scenarios. We also developed a feasible solution that can select an effective algorithm or a greedy algorithm based on the total consumed time. With the constraint of a fixed coverage rate threshold, a larger coverage radius may lead to fewer facilities and higher relative redundancy. Flexible designs of the important node set where all the elements must be selected and the exclusive node set where all the elements cannot be selected are carried out to construct several scenarios. The comparative analysis shows that the optimal solution is an obvious improvement on the existing emergency rescue spot layout in the real railway network. This study provides an alternative version of the edge covering problem, and shows a successful application in the location problem of railway rescue spots.

Suggested Citation

  • Huizhu Wang & Jianqin Zhou, 2023. "Location of Railway Emergency Rescue Spots Based on a Near-Full Covering Problem: From a Perspective of Diverse Scenarios," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6833-:d:1126617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    2. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    3. Blanquero, Rafael & Carrizosa, Emilio & G.-Tóth, Boglárka, 2016. "Maximal Covering Location Problems on networks with regional demand," Omega, Elsevier, vol. 64(C), pages 77-85.
    4. Paul, Nicholas R. & Lunday, Brian J. & Nurre, Sarah G., 2017. "A multiobjective, maximal conditional covering location problem applied to the relocation of hierarchical emergency response facilities," Omega, Elsevier, vol. 66(PA), pages 147-158.
    5. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    6. Linlin Zhang & Na Cui, 2021. "Pre-Positioning Facility Location and Resource Allocation in Humanitarian Relief Operations Considering Deprivation Costs," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    7. Ran Wei & Alan Murray & Rajan Batta, 2014. "A bounding-based solution approach for the continuous arc covering problem," Journal of Geographical Systems, Springer, vol. 16(2), pages 161-182, April.
    8. Zhaoping Tang & Jianping Sun, 2018. "Multi objective optimization of railway emergency rescue resource allocation and decision," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(3), pages 696-702, June.
    9. Dezhi Zhang & Shuxin Yang & Shuangyan Li & Jiajun Fan & Bin Ji, 2020. "Integrated Optimization of the Location–Inventory Problem of Maintenance Component Distribution for High-Speed Railway Operations," Sustainability, MDPI, vol. 12(13), pages 1-25, July.
    10. Weiqiao Wang & Kai Yang & Lixing Yang & Ziyou Gao, 2022. "Tractable approximations for the distributionally robust conditional vertex p-center problem: Application to the location of high-speed railway emergency rescue stations," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(3), pages 525-539, March.
    11. Baldomero-Naranjo, Marta & Kalcsics, Jörg & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2022. "Upgrading edges in the maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 14-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huizhu Wang & Jianqin Zhou & Ling Zhou, 2024. "A Lattice Boltzmann Method-like Algorithm for the Maximal Covering Location Problem on the Complex Network: Application to Location of Railway Emergency-Rescue Spot," Mathematics, MDPI, vol. 12(2), pages 1-20, January.
    2. Pelegrín, Mercedes & Xu, Liding, 2023. "Continuous covering on networks: Improved mixed integer programming formulations," Omega, Elsevier, vol. 117(C).
    3. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    4. Sadeghi, Mohammad & Yaghoubi, Saeed, 2024. "Optimization models for cloud seeding network design and operations," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1146-1167.
    5. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    6. Mohri, Seyed Sina & Akbarzadeh, Meisam & Sayed Matin, Seyed Hamed, 2020. "A Hybrid model for locating new emergency facilities to improve the coverage of the road crashes," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    7. Martha-Selene Casas-Ramírez & José-Fernando Camacho-Vallejo & Juan A. Díaz & Dolores E. Luna, 2020. "A bi-level maximal covering location problem," Operational Research, Springer, vol. 20(2), pages 827-855, June.
    8. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    9. Ran Wei, 2016. "Coverage Location Models," International Regional Science Review, , vol. 39(1), pages 48-76, January.
    10. Muren, & Li, Hao & Mukhopadhyay, Samar K. & Wu, Jian-jun & Zhou, Li & Du, Zhiping, 2020. "Balanced maximal covering location problem and its application in bike-sharing," International Journal of Production Economics, Elsevier, vol. 223(C).
    11. Jenkins, Phillip R. & Lunday, Brian J. & Robbins, Matthew J., 2020. "Robust, multi-objective optimization for the military medical evacuation location-allocation problem," Omega, Elsevier, vol. 97(C).
    12. Xu, Jing & Murray, Alan T. & Church, Richard L. & Wei, Ran, 2023. "Service allocation equity in location coverage analytics," European Journal of Operational Research, Elsevier, vol. 305(1), pages 21-37.
    13. Aghajani, Mojtaba & Torabi, S. Ali & Heydari, Jafar, 2020. "A novel option contract integrated with supplier selection and inventory prepositioning for humanitarian relief supply chains," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    14. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    15. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    16. Jing Zuo & Mengxing Shang & Jianwu Dang, 2022. "Research on the Optimization Model of Railway Emergency Rescue Network Considering Space-Time Accessibility," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    17. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    18. He, Zhou & Fan, Bo & Cheng, T.C.E. & Wang, Shou-Yang & Tan, Chin-Hon, 2016. "A mean-shift algorithm for large-scale planar maximal covering location problems," European Journal of Operational Research, Elsevier, vol. 250(1), pages 65-76.
    19. Haywood, Adam B. & Lunday, Brian J. & Robbins, Matthew J. & Pachter, Meir N., 2022. "The weighted intruder path covering problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 347-358.
    20. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6833-:d:1126617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.