IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1460-d1033445.html
   My bibliography  Save this article

Research on Optimal Configuration of Landscape Storage in Public Buildings Based on Improved NSGA-II

Author

Listed:
  • Shibo Li

    (College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China)

  • Hu Zhou

    (College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China)

  • Genzhu Xu

    (College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China)

Abstract

The transition to clean and low-carbon energy in public buildings is crucial to energy saving and green social development. This paper focus on the sustainable development of public buildings and the construction of complementary power generation systems in existing public buildings. In the study, it was found that the constraints of the energy storage system could not be satisfied, which would result in the failure of the energy storage system for the purpose of peak regulation and stable operation of the microgrid. In order to satisfy the constraint conditions of the energy storage system, a spatial transformation method was proposed that improves the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The simulation results show that the spatial transformation Non-dominated Sorting Genetic Algorithm-II (STNSGA-II) has advantages in dealing with the strong constraints of the energy storage system. The introduction of the complementary power generation system with energy storage system in public buildings can save 23.74% to 31.17% from the perspective of optimal cost, and can reduce of CO 2 emissions by at least 2478 kg from the perspective of carbon emission reduction. This study presents a case for transforming public buildings from simple consumers of energy systems to active contributors supporting large-scale wind and PV access.

Suggested Citation

  • Shibo Li & Hu Zhou & Genzhu Xu, 2023. "Research on Optimal Configuration of Landscape Storage in Public Buildings Based on Improved NSGA-II," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1460-:d:1033445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yongli & Wang, Yudong & Huang, Yujing & Li, Fang & Zeng, Ming & Li, Jiapu & Wang, Xiaohai & Zhang, Fuwei, 2019. "Planning and operation method of the regional integrated energy system considering economy and environment," Energy, Elsevier, vol. 171(C), pages 731-750.
    2. Amir Abdul Majid, 2022. "Forecasting Monthly Wind Energy Using an Alternative Machine Training Method with Curve Fitting and Temporal Error Extraction Algorithm," Energies, MDPI, vol. 15(22), pages 1-24, November.
    3. Young Hun Lee & In Wha Jeong & Tae Hyun Sung, 2021. "An Assessment of the Optimal Capacity and an Economic Evaluation of a Sustainable Photovoltaic Energy System in Korea," Sustainability, MDPI, vol. 13(21), pages 1-15, November.
    4. Shreya Shree Das & Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    5. Abdulrahman AlKassem & Azeddine Draou & Abdullah Alamri & Hisham Alharbi, 2022. "Design Analysis of an Optimal Microgrid System for the Integration of Renewable Energy Sources at a University Campus," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    6. Maksymilian Homa & Anna Pałac & Maciej Żołądek & Rafał Figaj, 2022. "Small-Scale Hybrid and Polygeneration Renewable Energy Systems: Energy Generation and Storage Technologies, Applications, and Analysis Methodology," Energies, MDPI, vol. 15(23), pages 1-52, December.
    7. Anindya Bharatee & Pravat Kumar Ray & Bidyadhar Subudhi & Arnab Ghosh, 2022. "Power Management Strategies in a Hybrid Energy Storage System Integrated AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(19), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karim El Moutaouakil & Abdellatif El Ouissari & Vasile Palade & Anas Charroud & Adrian Olaru & Hicham Baïzri & Saliha Chellak & Mouna Cheggour, 2023. "Multi-Objective Optimization for Controlling the Dynamics of the Diabetic Population," Mathematics, MDPI, vol. 11(13), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    2. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    3. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    4. Zhaonian Ye & Yongzhen Wang & Kai Han & Changlu Zhao & Juntao Han & Yilin Zhu, 2023. "Bi-Objective Optimization and Emergy Analysis of Multi-Distributed Energy System Considering Shared Energy Storage," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    5. Wang, Han & Yan, Jie & Han, Shuang & Liu, Yongqian, 2020. "Switching strategy of the low wind speed wind turbine based on real-time wind process prediction for the integration of wind power and EVs," Renewable Energy, Elsevier, vol. 157(C), pages 256-272.
    6. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    7. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    8. Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    9. Jiang, Xin & Jin, Yang & Zheng, Xueyuan & Hu, Guobao & Zeng, Qingshan, 2020. "Optimal configuration of grid-side battery energy storage system under power marketization," Applied Energy, Elsevier, vol. 272(C).
    10. Zhu, Xu & Yang, Jun & Pan, Xueli & Li, Gaojunjie & Rao, Yingqing, 2020. "Regional integrated energy system energy management in an industrial park considering energy stepped utilization," Energy, Elsevier, vol. 201(C).
    11. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    12. Xiang, Yue & Cai, Hanhu & Gu, Chenghong & Shen, Xiaodong, 2020. "Cost-benefit analysis of integrated energy system planning considering demand response," Energy, Elsevier, vol. 192(C).
    13. Gao, Chong & Lin, Junjie & Zeng, Jianfeng & Han, Fengwu, 2022. "Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP," Applied Energy, Elsevier, vol. 328(C).
    14. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    15. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2022. "System Profit Improvement of a Thermal–Wind–CAES Hybrid System Considering Imbalance Cost in the Electricity Market," Energies, MDPI, vol. 15(24), pages 1-25, December.
    16. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    17. Xi, Yufei & Fang, Jiakun & Chen, Zhe & Zeng, Qing & Lund, Henrik, 2021. "Optimal coordination of flexible resources in the gas-heat-electricity integrated energy system," Energy, Elsevier, vol. 223(C).
    18. Valentyna Kukharets & Dalia Juočiūnienė & Taras Hutsol & Olena Sukmaniuk & Jonas Čėsna & Savelii Kukharets & Piotr Piersa & Szymon Szufa & Iryna Horetska & Alona Shevtsova, 2023. "An Algorithm for Managerial Actions on the Rational Use of Renewable Sources of Energy: Determination of the Energy Potential of Biomass in Lithuania," Energies, MDPI, vol. 16(1), pages 1-17, January.
    19. Tan, Mao & Liao, Chengchen & Chen, Jie & Cao, Yijia & Wang, Rui & Su, Yongxin, 2023. "A multi-task learning method for multi-energy load forecasting based on synthesis correlation analysis and load participation factor," Applied Energy, Elsevier, vol. 343(C).
    20. Wu, Di & Han, Zhonghe & Liu, Zhijian & Li, Peng & Ma, Fanfan & Zhang, Han & Yin, Yunxing & Yang, Xinyan, 2021. "Comparative study of optimization method and optimal operation strategy for multi-scenario integrated energy system," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1460-:d:1033445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.