IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15899-d1279376.html
   My bibliography  Save this article

Numerical and Experimental Investigation of a Compressive-Mode Hull Piezoelectric Energy Harvester under Impact Force

Author

Listed:
  • Su Xian Long

    (Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Shin Yee Khoo

    (Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
    Advanced Shock and Vibration Research Group, Applied Vibration Laboratory, Block R, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
    Centre of Research Industry 4.0 (CRI 4.0), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Zhi Chao Ong

    (Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
    Advanced Shock and Vibration Research Group, Applied Vibration Laboratory, Block R, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
    Centre of Research Industry 4.0 (CRI 4.0), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Ming Foong Soong

    (Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Yu-Hsi Huang

    (Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
    Graduate School of Advanced Technology, National Taiwan University, Taipei 10617, Taiwan)

Abstract

In recent years, much research has been carried out to enhance the efficiency of the piezoelectric energy harvester (PEH). This study focuses on the performance of the compressive Hull PEH under impact forces, which simulates real-world scenarios, such as foot strikes or vehicular wheel excitations, more accurately compared to harmonic forces. The experimental results prove the performance of the Hull PEH with less than 5.2% of deviation compared to finite element analysis outcomes under impact forces between 10 N and 1 kN. The Hull PEH more substantially amplified the input force and compressed the piezoelectric material, which was Lead Zirconate Titanate (PZT). Consequently, it amplified the voltage output of a standalone PZT up to 16.9 times under a similar boundary condition. A maximum peak power output of 7.16 W was produced across 50 kΩ of optimum load resistance under 1 kN of impact force, which surpassed the benchmark Cymbal PEH by 37.68 times. Furthermore, it demonstrated a higher energy conversion efficiency of 84.38% under the impact force compared to the harmonic force. This research conclusively proves that the Hull PEH has superior performance in terms of voltage output, power output, loading capacity, and efficiency, making it a promising technology for impact loading applications to generate green energy.

Suggested Citation

  • Su Xian Long & Shin Yee Khoo & Zhi Chao Ong & Ming Foong Soong & Yu-Hsi Huang, 2023. "Numerical and Experimental Investigation of a Compressive-Mode Hull Piezoelectric Energy Harvester under Impact Force," Sustainability, MDPI, vol. 15(22), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15899-:d:1279376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shan, Xiaobiao & Tian, Haigang & Chen, Danpeng & Xie, Tao, 2019. "A curved panel energy harvester for aeroelastic vibration," Applied Energy, Elsevier, vol. 249(C), pages 58-66.
    2. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    2. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    3. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    4. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    5. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    6. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    7. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    8. Maiti, Moinak, 2022. "Does development in venture capital investments influence green growth?," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    9. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    10. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    11. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Ryan P. Thombs, 2018. "Has the relationship between non-fossil fuel energy sources and CO2 emissions changed over time? A cross-national study, 2000–2013," Climatic Change, Springer, vol. 148(4), pages 481-490, June.
    13. Zhang, Wei & Valencia, Andrea & Gu, Lixing & Zheng, Qipeng P. & Chang, Ni-Bin, 2020. "Integrating emerging and existing renewable energy technologies into a community-scale microgrid in an energy-water nexus for resilience improvement," Applied Energy, Elsevier, vol. 279(C).
    14. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    15. Kun-Hsien Lu & Hsiao-Wei D. Chiang & Pei-Jen Wang, 2022. "Sensitivity Analysis of Transcritical CO 2 Cycle Performance Regarding Isentropic Efficiencies of Turbomachinery for Low Temperature Heat Sources," Energies, MDPI, vol. 15(23), pages 1-18, November.
    16. Koray Altintas & Ozalp Vayvay & Sinan Apak & Emine Cobanoglu, 2020. "An Extended GRA Method Integrated with Fuzzy AHP to Construct a Multidimensional Index for Ranking Overall Energy Sustainability Performances," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    17. Talent, Orlando & Du, Haiping, 2018. "Optimal sizing and energy scheduling of photovoltaic-battery systems under different tariff structures," Renewable Energy, Elsevier, vol. 129(PA), pages 513-526.
    18. Cucchiella, Federica & D’Adamo, Idiano, 2012. "Feasibility study of developing photovoltaic power projects in Italy: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1562-1576.
    19. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    20. Vithayasrichareon, Peerapat & MacGill, Iain F. & Nakawiro, Thanawat, 2012. "Assessing the sustainability challenges for electricity industries in ASEAN newly industrialising countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2217-2233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15899-:d:1279376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.