IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15635-d1274451.html
   My bibliography  Save this article

Aqueous Organic Redox-Targeting Flow Batteries with Advanced Solid Materials: Current Status and Future Perspective

Author

Listed:
  • Jin Ma

    (China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China)

  • Sida Rong

    (China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China)

  • Yichong Cai

    (China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China)

  • Tidong Wang

    (China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China)

  • Zheng Han

    (China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China)

  • Ya Ji

    (China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China)

Abstract

Aqueous organic redox flow batteries (AORFBs) represent innovative and sustainable systems featuring decoupled energy capacity and power density; storing energy within organic redox-active materials. This design facilitates straightforward scalability, holding the potential for an affordable energy storage solution. However, AORFBs face challenges of unsatisfied energy density and stability. Redox-targeting (RT) reaction is a promising way to resolve these problems, which involves a closed-loop electrochemical–chemical cycle between soluble redox mediators and solid materials. Among all these systems, the aqueous organic redox-targeting system is the most promising due to its greater sustainability, safety, low cost, and excellent tunability when compared to non-aqueous or all-vanadium systems, especially when it comes to energy storage on a large scale. Firstly, various types of AORFBs and their characteristics are discussed and analyzed, followed by introducing the concept and the evolution of RT. In addition, advanced characterization techniques to analyze RT-based AORFBs are summarized. Finally, the challenges lying in aqueous organic redox-targeting flow batteries are stated and corresponding recommendations are provided. It is anticipated that AORFBs with advanced solid materials will provide a promising solution for large-scale energy storage.

Suggested Citation

  • Jin Ma & Sida Rong & Yichong Cai & Tidong Wang & Zheng Han & Ya Ji, 2023. "Aqueous Organic Redox-Targeting Flow Batteries with Advanced Solid Materials: Current Status and Future Perspective," Sustainability, MDPI, vol. 15(21), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15635-:d:1274451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Lindley, 2010. "Smart grids: The energy storage problem," Nature, Nature, vol. 463(7277), pages 18-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    2. Chang, Youngho & Fang, Zheng & Li, Yanfei, 2016. "Renewable energy policies in promoting financing and investment among the East Asia Summit countries: Quantitative assessment and policy implications," Energy Policy, Elsevier, vol. 95(C), pages 427-436.
    3. Mueller, Simon C. & Sandner, Philipp G. & Welpe, Isabell M., 2015. "Monitoring innovation in electrochemical energy storage technologies: A patent-based approach," Applied Energy, Elsevier, vol. 137(C), pages 537-544.
    4. Hasan, Rasedul & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Grid-connected isolated PV microinverters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1065-1080.
    5. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Domestic hot water storage: Balancing thermal and sanitary performance," Energy Policy, Elsevier, vol. 68(C), pages 334-339.
    6. Yan Zhang, 2017. "Accelerating Sustainability by Hydropower Development in China: The Story of HydroLancang," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    7. Lund, Henrik, 2018. "Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach," Energy, Elsevier, vol. 151(C), pages 94-102.
    8. Niu, Shuwen & Liu, Yiyue & Ding, Yongxia & Qu, Wei, 2016. "China׳s energy systems transformation and emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 782-795.
    9. Jihoon Moon & Yongsung Kim & Minjae Son & Eenjun Hwang, 2018. "Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron," Energies, MDPI, vol. 11(12), pages 1-20, November.
    10. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Improving the energy storage capability of hot water tanks through wall material specification," Energy, Elsevier, vol. 78(C), pages 128-140.
    11. Mina Farmanbar & Kiyan Parham & Øystein Arild & Chunming Rong, 2019. "A Widespread Review of Smart Grids Towards Smart Cities," Energies, MDPI, vol. 12(23), pages 1-18, November.
    12. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    13. Faran Ahmed & Muhammad Naeem & Muhammad Iqbal, 2017. "ICT and renewable energy: a way forward to the next generation telecom base stations," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(1), pages 43-56, January.
    14. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2020. "Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.)," Energies, MDPI, vol. 13(15), pages 1-22, August.
    15. Botta, G. & Mor, R. & Patel, H. & Aravind, P.V., 2018. "Thermodynamic evaluation of bi-directional solid oxide cell systems including year-round cumulative exergy analysis," Applied Energy, Elsevier, vol. 226(C), pages 1100-1118.
    16. Burkhardt, Marko & Jordan, Isabel & Heinrich, Sabrina & Behrens, Johannes & Ziesche, André & Busch, Günter, 2019. "Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 818-826.
    17. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15635-:d:1274451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.