IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11332-d1198804.html
   My bibliography  Save this article

Biodiesel Production Using a Banana Peel Extract-Mediated Highly Basic Heterogeneous Nanocatalyst

Author

Listed:
  • Ananya Satapathy

    (Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India)

  • Kankana Saikia

    (Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India)

  • Samuel Lalthazuala Rokhum

    (Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India)

Abstract

Greener methods for the production of nanoparticles (NPs) are highly investigated to minimize the harmfulness of chemical synthetic processes. In this study, CaO (calcium oxide) NPs were synthesized using extracts of banana ( Musa acuminata ) leaves. The precipitate of Ca(OH) 2 (calcium hydroxide) obtained from the precursor Ca(NO 3 ) 2 (calcium nitrate) was calcined at 900 °C in a muffle furnace to form CaO. The catalytic activity of the prepared CaO was studied in transesterification of soybean oil. From the 1 H-NMR analysis, a high soybean oil conversion of 98.0% was obtained under the optimum reaction conditions of 8 wt% of catalyst loading, 2 h reaction time, and a 15:1 methanol to oil molar ratio at 65 °C temperature. 1 H-NMR, 13 C-NMR, and FT-IR spectroscopic studies of the product proved the formation of biodiesel. The CaO nanocatalyst was characterized using XRD, SEM-EDS, TEM, FT-IR, XPS, and BET analyses. The average diameter of the catalyst was determined as 46.2 nm from TEM analyses. The catalyst can be used successfully even after five active reaction cycles without substantial loss in the activity of the catalyst.

Suggested Citation

  • Ananya Satapathy & Kankana Saikia & Samuel Lalthazuala Rokhum, 2023. "Biodiesel Production Using a Banana Peel Extract-Mediated Highly Basic Heterogeneous Nanocatalyst," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11332-:d:1198804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11332/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11332/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen, Zhenzhong & Yu, Xinhai & Tu, Shan-Tung & Yan, Jinyue & Dahlquist, Erik, 2010. "Synthesis of biodiesel from vegetable oil with methanol catalyzed by Li-doped magnesium oxide catalysts," Applied Energy, Elsevier, vol. 87(3), pages 743-748, March.
    2. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    3. Zhang, Pingbo & Liu, Yanlei & Fan, Mingming & Jiang, Pingping, 2016. "Catalytic performance of a novel amphiphilic alkaline ionic liquid for biodiesel production: Influence of basicity and conductivity," Renewable Energy, Elsevier, vol. 86(C), pages 99-105.
    4. Ngaosuwan, Kanokwan & Goodwin, James G. & Prasertdham, Piyasan, 2016. "A green sulfonated carbon-based catalyst derived from coffee residue for esterification," Renewable Energy, Elsevier, vol. 86(C), pages 262-269.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jinfan & Ao, Zhifeng & Wu, Hao & Zhang, Sufeng & Chi, Concong & Hou, Chen & Qian, Liwei, 2020. "Waste paper-derived magnetic carbon composite: A novel eco-friendly solid acid for the synthesis of n-butyl levulinate from furfuryl alcohol," Renewable Energy, Elsevier, vol. 146(C), pages 477-483.
    2. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    5. Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    6. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    7. Arumugam, A. & Ponnusami, V., 2014. "Biodiesel production from Calophyllum inophyllum oil using lipase producing Rhizopus oryzae cells immobilized within reticulated foams," Renewable Energy, Elsevier, vol. 64(C), pages 276-282.
    8. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    9. Ishola, Mofoluwake M. & Brandberg, Tomas & Sanni, Sikiru A. & Taherzadeh, Mohammad J., 2013. "Biofuels in Nigeria: A critical and strategic evaluation," Renewable Energy, Elsevier, vol. 55(C), pages 554-560.
    10. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    11. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    12. Guadalupe Pérez & Jorge Islas & Mirna Guevara & Raúl Suárez, 2019. "The Sustainable Cultivation of Mexican Nontoxic Jatropha Curcas to Produce Biodiesel and Food in Marginal Rural Lands," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    13. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    14. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    15. D´Agosto, Márcio de Almeida & Vieira da Silva, Marcelino Aurélio & de Oliveira, Cíntia Machado & Franca, Luíza Santana & da Costa Marques, Luiz Guilherme & Soares Murta, Aurélio Lamare & de Freitas, M, 2015. "Evaluating the potential of the use of biodiesel for power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 807-817.
    16. Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Cheung, Siu Ming & Chen, Xiankun, 2023. "Esterification efficiency improvement of carbon-based solid acid catalysts induced by biomass pretreatments: Intrinsic mechanism," Energy, Elsevier, vol. 263(PB).
    17. Dechakhumwat, Suppasate & Hongmanorom, Plaifa & Thunyaratchatanon, Chachchaya & Smith, Siwaporn Meejoo & Boonyuen, Supakorn & Luengnaruemitchai, Apanee, 2020. "Catalytic activity of heterogeneous acid catalysts derived from corncob in the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 148(C), pages 897-906.
    18. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    19. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    20. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11332-:d:1198804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.