IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10708-d1189166.html
   My bibliography  Save this article

Renewable-Energy-Based Microgrid Design and Feasibility Analysis for King Saud University Campus, Riyadh

Author

Listed:
  • Mohammed Abdullah H. Alshehri

    (Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Youguang Guo

    (Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Gang Lei

    (Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia)

Abstract

The world is forced to think about alternate energy sources because fossil fuel stocks are unreliable, harmful, and depleting quickly. Deployments of microgrids powered by renewable energy are some of the most economical, effective, dependable, and sustainable answers to this problem. The design of a power system with the least amount of economic and environmental impact is the main challenge because the world is currently facing climate change disasters on a scale that has never been seen before. As a result, there is an urgent need to transition to renewable energy resources to meet energy demands. This study examines the creation of a hybrid microgrid to meet the electrical load requirements of the King Saud University campus in Riyadh by utilizing the site’s solar and wind potential. A software called HOMER Pro Version 3.14.5 is used to simulate the planned microgrid system. The software can run numerous simulations while taking into account various system configurations. The ultimate objective is to choose the best combination of different power sources to create a microgrid with low energy costs, dependability, minimal GHG emissions, and a high penetration of renewable energy. The solar, wind, and battery system connected to the grid was shown to be the most advantageous choice in terms of cost of energy (COE), net present cost (NPC), operational costs, and GHG emissions after the software ran numerous simulations. The most economically advantageous way to meet the load demands of a university campus while still achieving more than 82% renewable penetration is to use an optimal system architecture. In this study, the ideal system configuration is subjected to sensitivity analysis to confirm the system’s performance. This optimal system design is used as a benchmark for examining the potential usage of renewable energy in the education sector in Saudi Arabia in particular and in any educational facility worldwide in general.

Suggested Citation

  • Mohammed Abdullah H. Alshehri & Youguang Guo & Gang Lei, 2023. "Renewable-Energy-Based Microgrid Design and Feasibility Analysis for King Saud University Campus, Riyadh," Sustainability, MDPI, vol. 15(13), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10708-:d:1189166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Navid Shirzadi & Fuzhan Nasiri & Ursula Eicker, 2020. "Optimal Configuration and Sizing of an Integrated Renewable Energy System for Isolated and Grid-Connected Microgrids: The Case of an Urban University Campus," Energies, MDPI, vol. 13(14), pages 1-18, July.
    2. Ammar A. Melaibari & Abdullah M. Abdul-Aziz & Nidal H. Abu-Hamdeh, 2022. "Design and Optimization of a Backup Renewable Energy Station for Photovoltaic Hybrid System in the New Jeddah Industrial City," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    3. Irfan Khan & Fujun Hou, 2021. "The Impact of Socio-economic and Environmental Sustainability on CO2 Emissions: A Novel Framework for Thirty IEA Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(3), pages 1045-1076, June.
    4. León, L.M. & Romero-Quete, D. & Merchán, N. & Cortés, C.A., 2023. "Optimal design of PV and hybrid storage based microgrids for healthcare and government facilities connected to highly intermittent utility grids," Applied Energy, Elsevier, vol. 335(C).
    5. Chedid, Riad & Sawwas, Ahmad & Fares, Dima, 2020. "Optimal design of a university campus micro-grid operating under unreliable grid considering PV and battery storage," Energy, Elsevier, vol. 200(C).
    6. Desmon Simatupang & Ilman Sulaeman & Niek Moonen & Rinaldi Maulana & Safitri Baharuddin & Amalia Suryani & Jelena Popovic & Frank Leferink, 2021. "Remote Microgrids for Energy Access in Indonesia—Part II: PV Microgrids and a Technology Outlook," Energies, MDPI, vol. 14(21), pages 1-18, October.
    7. Abdulrahman AlKassem & Azeddine Draou & Abdullah Alamri & Hisham Alharbi, 2022. "Design Analysis of an Optimal Microgrid System for the Integration of Renewable Energy Sources at a University Campus," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    8. Jing Wang & Yubing Xu, 2021. "Internet Usage, Human Capital and CO 2 Emissions: A Global Perspective," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    9. Rohit Trivedi & Sandipan Patra & Yousra Sidqi & Benjamin Bowler & Fiona Zimmermann & Geert Deconinck & Antonios Papaemmanouil & Shafi Khadem, 2022. "Community-Based Microgrids: Literature Review and Pathways to Decarbonise the Local Electricity Network," Energies, MDPI, vol. 15(3), pages 1-30, January.
    10. Adekoya, Oluwasegun B. & Olabode, Joshua K. & Rafi, Syed K., 2021. "Renewable energy consumption, carbon emissions and human development: Empirical comparison of the trajectories of world regions," Renewable Energy, Elsevier, vol. 179(C), pages 1836-1848.
    11. Mohammed Kharrich & Salah Kamel & Ali S. Alghamdi & Ahmad Eid & Mohamed I. Mosaad & Mohammed Akherraz & Mamdouh Abdel-Akher, 2021. "Optimal Design of an Isolated Hybrid Microgrid for Enhanced Deployment of Renewable Energy Sources in Saudi Arabia," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.
    2. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    3. José Carlos Ugaz Peña & Christian Luis Medina Rodríguez & Gustavo O. Guarniz Avalos, 2023. "Study of a New Wave Energy Converter with Perturb and Observe Maximum Power Point Tracking Method," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    4. Diego Mendoza Osorio & Javier Rosero Garcia, 2023. "Convex Stochastic Approaches for the Optimal Allocation of Distributed Energy Resources in AC Distribution Networks with Measurements Fitted to a Continuous Probability Distribution Function," Energies, MDPI, vol. 16(14), pages 1-27, July.
    5. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    6. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    7. Ahmed Al Mansur & Md. Ruhul Amin & Molla Shahadat Hossain Lipu & Md. Imamul Islam & Ratil H. Ashique & Zubaeer Bin Shams & Mohammad Asif ul Haq & Md. Hasan Maruf & ASM Shihavuddin, 2023. "The Effects of Non-Uniformly-Aged Photovoltaic Array on Mismatch Power Loss: A Practical Investigation towards Novel Hybrid Array Configurations," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    8. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    9. Asma Awan & Sidra Nawaz, 2022. "Towards Green Growth: Monitoring Progress and Investigating Its Determinants in South Asia," Journal of Economic Impact, Science Impact Publishers, vol. 4(3), pages 252-264.
    10. Retière, N. & Sidqi, Y. & Frankhauser, P., 2022. "A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    11. Hermann Ndoya & Simplice A. Asongu, 2022. "Digital divide, globalization and income inequality in sub-Saharan African countries: analysing cross-country heterogeneity," Social Responsibility Journal, Emerald Group Publishing Limited, vol. 20(1), pages 1-19, October.
    12. Peter Klement & Tobias Brandt & Lucas Schmeling & Antonieta Alcorta de Bronstein & Steffen Wehkamp & Fernando Andres Penaherrera Vaca & Mathias Lanezki & Patrik Schönfeldt & Alexander Hill & Nemanja K, 2022. "Local Energy Markets in Action: Smart Integration of National Markets, Distributed Energy Resources and Incentivisation to Promote Citizen Participation," Energies, MDPI, vol. 15(8), pages 1-24, April.
    13. Cheng Jin & Asif Razzaq & Faiza Saleem & Avik Sinha, 2022. "Asymmetric effects of eco-innovation and human capital development in realizing environmental sustainability in China: evidence from quantile ARDL framework," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 4947-4970, December.
    14. Obobisa, Emma Serwaa & Chen, Haibo & Mensah, Isaac Adjei, 2022. "The impact of green technological innovation and institutional quality on CO2 emissions in African countries," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    15. Xiaoqin Chen & Shenya Mao & Siqi Lv & Zhong Fang, 2022. "A Study on the Non-Linear Impact of Digital Technology Innovation on Carbon Emissions in the Transportation Industry," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    16. Alexey Cherepovitsyn & Evgeniya Rutenko, 2022. "Strategic Planning of Oil and Gas Companies: The Decarbonization Transition," Energies, MDPI, vol. 15(17), pages 1-26, August.
    17. Mahmood, Ahmad & Zahoor, Ahmed & Xiyue, Yang & Nazim, Hussain & Sinha, Avik, 2021. "Financial development and environmental degradation: Do human capital and institutional quality make a difference?," MPRA Paper 110039, University Library of Munich, Germany, revised 2021.
    18. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    19. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    20. Koçak, Emrah & Önderol, Seyit & Khan, Kamran, 2021. "Structural change, modernization, total factor productivity, and natural resources sustainability: An assessment with quantile and non-quantile estimators," Resources Policy, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10708-:d:1189166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.