IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9444-d1169304.html
   My bibliography  Save this article

A Sustainable Port-Hinterland Container Transport System: The Simulation-Based Scenarios for CO 2 Emission Reduction

Author

Listed:
  • Khandaker Rasel Hasan

    (Centre for Maritime and Logistics Management, Australian Maritime College, University of Tasmania, 100 Maritime Way, Newnham, TAS 7248, Australia)

  • Wei Zhang

    (Centre for Maritime and Logistics Management, Australian Maritime College, University of Tasmania, 100 Maritime Way, Newnham, TAS 7248, Australia)

  • Wenming Shi

    (Centre for Maritime and Logistics Management, Australian Maritime College, University of Tasmania, 100 Maritime Way, Newnham, TAS 7248, Australia)

Abstract

This paper calculates the CO 2 emissions for the port-hinterland container transport system and proposes possible emission reduction measures. This paper considers the Dhaka–Chittagong port-hinterland transport system in Bangladesh. The port-hinterland transport system represents 70% of the total international maritime containerised trade, including more than 2.0 million twenty-foot equivalent units (TEUs) per year. By implementing different scenarios using a simulation approach, this research suggests a substantial reduction in CO 2 emissions for the port-hinterland transport system. The scenarios include infrastructure development and performance and operational efficiency improvement in the port and modal shift for the hinterland. In formulating the scenarios, the current performance statistics of the port and its hinterland as well as the possibility of the implementation of these scenarios are carefully analysed. The findings depict that Bangladesh could significantly contribute to the reduction in port-hinterland CO 2 emissions by implementing the suggested scenarios.

Suggested Citation

  • Khandaker Rasel Hasan & Wei Zhang & Wenming Shi, 2023. "A Sustainable Port-Hinterland Container Transport System: The Simulation-Based Scenarios for CO 2 Emission Reduction," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9444-:d:1169304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Seong-Hyeok Moon & Jong Kyun Woo, 2014. "The impact of port operations on efficient ship operation from both economic and environmental perspectives," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(5), pages 444-461, September.
    2. César Ducruet & Hidekazu Itoh & Olaf Merk, 2014. "Time Efficiency at World Container Ports," International Transport Forum Discussion Papers 2014/8, OECD Publishing.
    3. Xiaodong Li & Haibo Kuang & Yan Hu, 2019. "Carbon Mitigation Strategies of Port Selection and Multimodal Transport Operations—A Case Study of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    4. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
    5. Khandaker Rasel Hasan & Wei Zhang & Wenming Shi, 2021. "Barriers to intermodal freight diversion: a total logistics cost approach," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(3), pages 569-586, September.
    6. McKinnon, A.C. & Piecyk, M.I., 2009. "Measurement of CO2 emissions from road freight transport: A review of UK experience," Energy Policy, Elsevier, vol. 37(10), pages 3733-3742, October.
    7. Lei Yang & Yiji Cai & Xiaozhe Zhong & Yongqiang Shi & Zhiyong Zhang, 2017. "A Carbon Emission Evaluation for an Integrated Logistics System—A Case Study of the Port of Shenzhen," Sustainability, MDPI, vol. 9(3), pages 1-23, March.
    8. Hercules Haralambides, 2017. "Globalization, public sector reform, and the role of ports in international supply chains," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 1-51, March.
    9. Alsnosy Balbaa & R. A. Swief & Noha H. El-Amary, 2019. "Smart Integration Based on Hybrid Particle Swarm Optimization Technique for Carbon Dioxide Emission Reduction in Eco-Ports," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    10. Liao, Chun-Hsiung & Tseng, Po-Hsing & Cullinane, Kevin & Lu, Chin-Shan, 2010. "The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port," Energy Policy, Elsevier, vol. 38(9), pages 5251-5257, September.
    11. Martínez-Moya, Julián & Vazquez-Paja, Barbara & Gimenez Maldonado, Jose Andrés, 2019. "Energy efficiency and CO2 emissions of port container terminal equipment: Evidence from the Port of Valencia," Energy Policy, Elsevier, vol. 131(C), pages 312-319.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodong Li & Haibo Kuang & Yan Hu, 2019. "Carbon Mitigation Strategies of Port Selection and Multimodal Transport Operations—A Case Study of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    2. Nanxi Wang & Daofang Chang & Xiaowei Shi & Jun Yuan & Yinping Gao, 2019. "Analysis and Design of Typical Automated Container Terminals Layout Considering Carbon Emissions," Sustainability, MDPI, vol. 11(10), pages 1-40, May.
    3. Tseng, Po-Hsing & Lin, Dung-Ying & Chien, Steven, 2014. "Investigating the impact of highway electronic toll collection to the external cost: A case study in Taiwan," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 265-272.
    4. Fei Ma & Wenlin Wang & Qipeng Sun & Fei Liu & Xiaodan Li, 2018. "Ecological Pressure of Carbon Footprint in Passenger Transport: Spatio-Temporal Changes and Regional Disparities," Sustainability, MDPI, vol. 10(2), pages 1-17, January.
    5. Heilig, Leonard & Lalla-Ruiz, Eduardo & Voß, Stefan, 2017. "Multi-objective inter-terminal truck routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 178-202.
    6. Feng, Mingxiang & Shaw, Shih-Lung & Peng, Guojun & Fang, Zhixiang, 2020. "Time efficiency assessment of ship movements in maritime ports: A case study of two ports based on AIS data," Journal of Transport Geography, Elsevier, vol. 86(C).
    7. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    8. Víctor Cloquell-Ballester & Vanesa G. Lo-Iacono-Ferreira & Miguel Ángel Artacho-Ramírez & Salvador F. Capuz-Rizo, 2020. "RUE Index as a Tool to Improve the Energy Intensity of Container Terminals—Case Study at Port of Valencia," Energies, MDPI, vol. 13(10), pages 1-19, May.
    9. Yun Peng & Wenyuan Wang & Ke Liu & Xiangda Li & Qi Tian, 2018. "The Impact of the Allocation of Facilities on Reducing Carbon Emissions from a Green Container Terminal Perspective," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    10. Li, Hongqi & Lu, Yue & Zhang, Jun & Wang, Tianyi, 2013. "Trends in road freight transportation carbon dioxide emissions and policies in China," Energy Policy, Elsevier, vol. 57(C), pages 99-106.
    11. Lingli Wang & Chuanxu Wang & Rongbing Huang, 2022. "Port-based supply chain decisions considering governmental pollution tax," Operational Research, Springer, vol. 22(5), pages 4769-4800, November.
    12. Yilin Zeng & Xiang Yuan & Bing Hou, 2023. "Analysis of Carbon Emission Reduction at the Port of Integrated Logistics: The Port of Shanghai Case Study," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    13. Tao, Xuezong & Wu, Qin & Zhu, Lichao, 2017. "Mitigation potential of CO2 emissions from modal shift induced by subsidy in hinterland container transport," Energy Policy, Elsevier, vol. 101(C), pages 265-273.
    14. Behzad Behdani & Bart Wiegmans & Violeta Roso & Hercules Haralambides, 2020. "Port-hinterland transport and logistics: emerging trends and frontier research," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(1), pages 1-25, March.
    15. Wu, Zhen & Woo, Su-Han & Lai, Po-Lin & Chen, Xiaoyi, 2022. "The economic impact of inland ports on regional development: Evidence from the Yangtze River region," Transport Policy, Elsevier, vol. 127(C), pages 80-91.
    16. Hanyu Lu & Lufei Huang, 2021. "Optimization of Shore Power Deployment in Green Ports Considering Government Subsidies," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    17. Turner, Elizabeth H. & Thompson, Mark A., 2023. "Further evidence on the financial impact of environmental regulations on the trucking industry," Transport Policy, Elsevier, vol. 133(C), pages 134-143.
    18. Zuo, Chengchoa & Birkin, Mark & Clarke, Graham & McEvoy, Fiona & Bloodworth, Andrew, 2018. "Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 26-38.
    19. Tareq Abu Aisha & Mustapha Ouhimmou & Marc Paquet, 2020. "Optimization of Container Terminal Layouts in the Seaport—Case of Port of Montreal," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    20. Ang Yang & Xiangyu Meng & He He & Liang Wang & Jing Gao, 2022. "Towards Optimized ARMGs’ Low-Carbon Transition Investment Decision Based on Real Options," Energies, MDPI, vol. 15(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9444-:d:1169304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.