IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p9117-d1164376.html
   My bibliography  Save this article

Evaluation of a Team-Based Collection and Delivery Operation

Author

Listed:
  • Toshihiro Osaragi

    (Department of Architecture and Building Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo 152-8550, Japan)

  • Yuya Taguchi

    (Department of Architecture and Building Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo 152-8550, Japan)

  • Narushige Shiode

    (Department of Geography, Geology and the Environment, Kingston University, Kingston upon Thames KT1 2EE, UK)

  • Shino Shiode

    (Department of Geography, Birkbeck, University of London, London WC1E 7HX, UK)

Abstract

The rise in the volume of e -commerce is adding increasing pressure on the logistics of parcel delivery. To improve the efficiency of their operations, the parcel industry in Japan is exploring team-based collection and delivery (TCD), whereby the sales driver (SD) hands out parcels to the field crews (FC), who subsequently deliver them to the door. However, the efficiency of TCD is still understudied. This study proposes a method for optimizing the delivery route for TCD and evaluates the efficiency of the ongoing operation. The TCD delivery problem focuses on minimizing the task completion time using parameters derived through surveys of the actual operations. Comparison between seven different methods show that the newly proposed method of fuzzy c -means clustering with a genetic algorithm outperforms the rest, rapidly computing sufficiently accurate results. Results suggest that the proposed optimal route reduces the total delivery time by up to 18.7%. However, the amount of time saved varies considerably by the area and the number of parcels delivered. Additional constraints for improving driver safety, the cost-benefit of increasing FCs, and the impact on the environmental cost are also considered. The proposed method also helps spread the workload and the travel time of the FCs more evenly, thus further reducing the total delivery time.

Suggested Citation

  • Toshihiro Osaragi & Yuya Taguchi & Narushige Shiode & Shino Shiode, 2023. "Evaluation of a Team-Based Collection and Delivery Operation," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9117-:d:1164376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/9117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/9117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pahwa, Anmol & Jaller, Miguel, 2022. "A cost-based comparative analysis of different last-mile strategies for e-commerce delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Wei Qi & Lefei Li & Sheng Liu & Zuo-Jun Max Shen, 2018. "Shared Mobility for Last-Mile Delivery: Design, Operational Prescriptions, and Environmental Impact," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 737-751, October.
    3. Ann Melissa Campbell & Martin Savelsbergh, 2006. "Incentive Schemes for Attended Home Delivery Services," Transportation Science, INFORMS, vol. 40(3), pages 327-341, August.
    4. Billy E. Gillett & Leland R. Miller, 1974. "A Heuristic Algorithm for the Vehicle-Dispatch Problem," Operations Research, INFORMS, vol. 22(2), pages 340-349, April.
    5. Janjevic, Milena & Winkenbach, Matthias & Merchán, Daniel, 2019. "Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 37-67.
    6. Özarık, Sami Serkan & Veelenturf, Lucas P. & Woensel, Tom Van & Laporte, Gilbert, 2021. "Optimizing e-commerce last-mile vehicle routing and scheduling under uncertain customer presence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    7. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    2. Zhang, Wenwei & Xu, Min & Wang, Shuaian, 2023. "Joint location and pricing optimization of self-service in urban logistics considering customers’ choice behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    3. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    4. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    5. Xiang, Zhihai & Chu, Chengbin & Chen, Haoxun, 2006. "A fast heuristic for solving a large-scale static dial-a-ride problem under complex constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1117-1139, October.
    6. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    7. Zhou, Wei & Zhang, Keang & Zhang, Ying & Duan, Yunlong, 2021. "Operation strategies with respect to insurance subsidy optimization for online retailers dealing with large items," International Journal of Production Economics, Elsevier, vol. 232(C).
    8. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    9. César Rego, 1998. "A Subpath Ejection Method for the Vehicle Routing Problem," Management Science, INFORMS, vol. 44(10), pages 1447-1459, October.
    10. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    11. Haider, Zulqarnain & Hu, Yujie & Charkhgard, Hadi & Himmelgreen, David & Kwon, Changhyun, 2022. "Creating grocery delivery hubs for food deserts at local convenience stores via spatial and temporal consolidation," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    12. Kloster, Konstantin & Moeini, Mahdi & Vigo, Daniele & Wendt, Oliver, 2023. "The multiple traveling salesman problem in presence of drone- and robot-supported packet stations," European Journal of Operational Research, Elsevier, vol. 305(2), pages 630-643.
    13. Glize, Estèle & Roberti, Roberto & Jozefowiez, Nicolas & Ngueveu, Sandra Ulrich, 2020. "Exact methods for mono-objective and Bi-Objective Multi-Vehicle Covering Tour Problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 812-824.
    14. Xiang Song & Dylan Jones & Nasrin Asgari & Tim Pigden, 2020. "Multi-objective vehicle routing and loading with time window constraints: a real-life application," Annals of Operations Research, Springer, vol. 291(1), pages 799-825, August.
    15. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    16. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    17. Ehmke, Jan Fabian & Campbell, Ann Melissa, 2014. "Customer acceptance mechanisms for home deliveries in metropolitan areas," European Journal of Operational Research, Elsevier, vol. 233(1), pages 193-207.
    18. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    19. Sergey Naumov & David R. Keith & Charles H. Fine, 2020. "Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1354-1371, May.
    20. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9117-:d:1164376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.