IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p220-d1012653.html
   My bibliography  Save this article

Brazilian Coal Tailings Projects: Advanced Study of Sustainable Using FIB-SEM and HR-TEM

Author

Listed:
  • Marcos L. S. Oliveira

    (Department of Civil and Environmental Engineering, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla 080002, Colombia
    Department of Sanitary and Environmental Engineering, Federal University of Santa Cataria, UFSC, Campus Universitário Trindade, Florianópolis 87504-200, SC, Brazil)

  • Diana Pinto

    (Department of Civil and Environmental Engineering, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla 080002, Colombia)

  • Maria Eliza Nagel-Hassemer

    (Department of Sanitary and Environmental Engineering, Federal University of Santa Cataria, UFSC, Campus Universitário Trindade, Florianópolis 87504-200, SC, Brazil)

  • Leila Dal Moro

    (ATITUS Educação, Passo Fundo 99070-220, RS, Brazil)

  • Giana de Vargas Mores

    (ATITUS Educação, Passo Fundo 99070-220, RS, Brazil)

  • Brian William Bodah

    (ATITUS Educação, Passo Fundo 99070-220, RS, Brazil
    Thaines and Bodah Center for Education and Development, 840 South Meadowlark Lane, Othello, WA 99344, USA
    Yakima Valley College, South 16th Avenue & Nob Hill Boulevard, Yakima, WA 98902, USA)

  • Alcindo Neckel

    (ATITUS Educação, Passo Fundo 99070-220, RS, Brazil)

Abstract

The objective of this study is to obtain a more detailed assessment of particles that contain rare-earth elements (REEs) in abandoned deposits of Brazilian fine coal tailings (BFCTs), so as to aid current coal mining industries in the identification of methodologies for extracting such elements (Santa Catarina State, Brazil). The BFCT areas were sampled for traditional mineralogical analysis by X-ray Diffraction, Raman Spectroscopy and nanomineralogy by a dual beam focused ion beam (FIB) coupled with field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) coupled with an energy dispersive X-ray microanalysis system (EDS). The results show that the smaller the sampled coal fines were, the higher the proportion of rare-earth elements they contained. Although the concentration of REEs is below what would normally be considered an economic grade, the fact that these deposits are already ground and close to the surface negate the need for mining (only uncovering). This makes it significantly easier for REEs to be extracted. In addition, owing to their proximity to road and rail transport in the regions under study, the opportunity exists for such resources (BFCTs) to be utilized as a secondary market as opposed to simply being discarded as has been done in the past.

Suggested Citation

  • Marcos L. S. Oliveira & Diana Pinto & Maria Eliza Nagel-Hassemer & Leila Dal Moro & Giana de Vargas Mores & Brian William Bodah & Alcindo Neckel, 2022. "Brazilian Coal Tailings Projects: Advanced Study of Sustainable Using FIB-SEM and HR-TEM," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:220-:d:1012653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nunes, Luis Eduardo & Lima, Marcus Vinicius Andrade de & Davison, Matthew & Leite, André Luis da Silva, 2021. "Switch and defer option in renewable energy projects: Evidences from Brazil," Energy, Elsevier, vol. 231(C).
    2. Kamble, Alka D. & Mendhe, Vinod A. & Chavan, Prakash D. & Saxena, Vinod K., 2022. "Insights of mineral catalytic effects of high ash coal on carbon conversion in fluidized bed Co-gasification through FTIR, XRD, XRF and FE-SEM," Renewable Energy, Elsevier, vol. 183(C), pages 729-751.
    3. Alcindo Neckel & Diana Pinto & Bashir Adelodun & Guilherme L. Dotto, 2022. "An Analysis of Nanoparticles Derived from Coal Fly Ash Incorporated into Concrete," Sustainability, MDPI, vol. 14(7), pages 1-11, March.
    4. Wei, Jing & Zhang, Jianjun & Wu, Xia & Song, Zeyu, 2022. "Governance in mining enterprises: An effective way to promote the intensification of resources—Taking coal resources as an example," Resources Policy, Elsevier, vol. 76(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nametala, Ciniro Aparecido Leite & Faria, Wandry Rodrigues & Lage, Guilherme Guimarães & Pereira, Benvindo Rodrigues, 2023. "Analysis of hourly price granularity implementation in the Brazilian deregulated electricity contracting environment," Utilities Policy, Elsevier, vol. 81(C).
    2. Ofori, Charles Gyamfi & Bokpin, Godfred Alufar & Aboagye, Anthony Q.Q. & Afful-Dadzie, Anthony, 2021. "A real options approach to investment timing decisions in utility-scale renewable energy in Ghana," Energy, Elsevier, vol. 235(C).
    3. Qüinny Soares Rocha & Rafaele Almeida Munis & Richardson Barbosa Gomes da Silva & Elí Wilfredo Zavaleta Aguilar & Danilo Simões, 2023. "Photovoltaic Solar Energy in Forest Nurseries: A Strategic Decision Based on Real Options Analysis," Sustainability, MDPI, vol. 15(5), pages 1-11, February.
    4. Shan Yang & Shengyuan Zhuo & Zitong Xu & Jianhong Chen, 2023. "Risk Assessment of Mining Heritage Reuse in Public–Private-Partnership Mode Based on Improved Matter–Element Extension Model," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    5. Allegretti, G. & Montoya, M.A. & Bertussi, L.A.S. & Talamini, E., 2022. "When being renewable may not be enough: Typologies of trends in energy and carbon footprint towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Anand, Amrit & Kachhap, Anju & Gautam, Shalini, 2023. "Synergistic effect of coal and biomass gasification and organo-inorganic elemental impact on gasification performance and product gas," Energy, Elsevier, vol. 282(C).
    7. Sahu, Pradeep & Vairakannu, Prabu, 2023. "CO2 based co-gasification of printed circuit board with high ash coal," Energy, Elsevier, vol. 263(PE).
    8. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Wang, Lei & Meng, Qiaorong & Lu, Yang & Gao, Qiang, 2023. "Comparative study on the chemical structure characteristics of lump coal during superheated water vapor pyrolysis and conventional pyrolysis," Energy, Elsevier, vol. 276(C).
    9. Małgorzata Sieradzka & Agata Mlonka-Mędrala & Izabela Kalemba-Rec & Markus Reinmöller & Felix Küster & Wojciech Kalawa & Aneta Magdziarz, 2022. "Evaluation of Physical and Chemical Properties of Residue from Gasification of Biomass Wastes," Energies, MDPI, vol. 15(10), pages 1-19, May.
    10. Li, Jie & Chang, Guozhang & Song, Ke & Hao, Bolun & Wang, Cuiping & Zhang, Jian & Yue, Guangxi & Hu, Shugang, 2023. "Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity," Renewable Energy, Elsevier, vol. 203(C), pages 434-444.
    11. Svetlana Ivanova & Anna Vesnina & Nataly Fotina & Alexander Prosekov, 2022. "An Overview of Carbon Footprint of Coal Mining to Curtail Greenhouse Gas Emissions," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    12. Maia, Cristiana Brasil & Castro Silva, Janaína de Oliveira, 2022. "Thermodynamic assessment of a small-scale solar chimney," Renewable Energy, Elsevier, vol. 186(C), pages 35-50.
    13. Marcos L. S. Oliveira & Gabriela Oliveira Valença & Diana Pinto & Leila Dal Moro & Brian William Bodah & Giana de Vargas Mores & Julian Grub & Bashir Adelodun & Alcindo Neckel, 2023. "Hazardous Elements in Sediments Detected in Former Decommissioned Coal Mining Areas in Colombia: A Need for Environmental Recovery," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    14. Luis F. O. Silva & Hongya Niu, 2022. "Editorial: Nano- and Micro-Contaminants and Their Effect on the Humans and Environment," Sustainability, MDPI, vol. 14(10), pages 1-5, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:220-:d:1012653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.