IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5618-d810041.html
   My bibliography  Save this article

Local-Scale Groundwater Sustainability Assessment Based on the Response to Groundwater Mining (MGSI): A Case Study of Da’an City, Jilin Province, China

Author

Listed:
  • Zhang Fang

    (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
    Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China)

  • Xiaofan Ding

    (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
    Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
    Shenyang Academy of Environmental Sciences, Shenyang 110004, China)

  • Han Gao

    (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
    Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China)

Abstract

Sustainable groundwater utilization is important for social and economic development. There is a need for groundwater sustainability assessment in small-scale areas lacking detailed mining data. Here, exploiting water level data series, we propose an indicator of groundwater sustainability based on the response to mining ( MGSI ) for better evaluation; it integrates groundwater data and spatio-temporal variability at a local scale. A decomposition coefficient was applied to decompose the pressure exerted by groundwater mining on the groundwater system for each monitoring well. It correlated with the groundwater response state. In Da’an City, Jilin Province, China, the appraised results revealed that the aquifer type exhibiting the greatest risk to groundwater sustainability changed from phreatic to confined during 2008–2017. The spatio-temporal distribution of different sustainability levels between and within the aquifers indicated that adjustment of the groundwater mining layout should be the focus of groundwater management in Da’an City. Additionally, the Mann–Kendall trend test and Sen’s slope trend analysis effectively explained the sustainable evolution of groundwater in Da’an City and confirmed the reliability of the MGSI method. The proposed method highlights the effects of groundwater mining on sustainability and helps us better understand the interaction between anthropogenic activities and groundwater resources.

Suggested Citation

  • Zhang Fang & Xiaofan Ding & Han Gao, 2022. "Local-Scale Groundwater Sustainability Assessment Based on the Response to Groundwater Mining (MGSI): A Case Study of Da’an City, Jilin Province, China," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5618-:d:810041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Larry Mays, 2013. "Groundwater Resources Sustainability: Past, Present, and Future," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4409-4424, October.
    2. Md. Kamruzzaman & A. T. M. Sakiur Rahman & Md. Shakil Ahmed & Md. Enamul Kabir & Quamrul Hasan Mazumder & M. Sayedur Rahman & Chowdhury Sarwar Jahan, 2018. "Spatio-temporal analysis of climatic variables in the western part of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 89-108, February.
    3. Nilgun Harmancioglu & Filiz Barbaros & Cem Cetinkaya, 2013. "Sustainability Issues in Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1867-1891, April.
    4. Henrique Chaves & Suzana Alipaz, 2007. "An Integrated Indicator Based on Basin Hydrology, Environment, Life, and Policy: The Watershed Sustainability Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 883-895, May.
    5. Brian Thomas & James Famiglietti, 2015. "Sustainable Groundwater Management in the Arid Southwestern US: Coachella Valley, California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4411-4426, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    2. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    3. Samuel Sandoval-Solis & Jose Pablo Ortiz Partida & Lindsay Floyd, 2022. "Multi-Objective Water Planning in a Poor Water Data Region: Aragvi River Basin," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    4. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2022. "Sustainable Water Resources Management Assessment Frameworks (SWRM-AF) for Arid and Semi-Arid Regions: A Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    5. S. E. Dickson & C. J. Schuster-Wallace & J. J. Newton, 2016. "Water Security Assessment Indicators: The Rural Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1567-1604, March.
    6. Xi Yang & Xingwei Chen, 2021. "Using a combined evaluation method to assess water resources sustainable utilization in Fujian Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 8047-8061, May.
    7. Abbas Roozbahani & Ebrahim Ebrahimi & Mohammad Ebrahim Banihabib, 2018. "A Framework for Ground Water Management Based on Bayesian Network and MCDM Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4985-5005, December.
    8. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2024. "A Sustainable Water Resources Management Assessment Framework (SWRM-AF) for Arid and Semi-Arid Regions—Part 1: Developing the Conceptual Framework," Sustainability, MDPI, vol. 16(7), pages 1-43, March.
    9. Robert L. Oxley & Larry W. Mays & Alan Murray, 2016. "Optimization Model for the Sustainable Water Resource Management of River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3247-3264, July.
    10. Wei Shen & Zhicheng Zheng & Yaochen Qin & Yang Li, 2020. "Spatiotemporal Characteristics and Driving Force of Ecosystem Health in an Important Ecological Function Region in China," IJERPH, MDPI, vol. 17(14), pages 1-19, July.
    11. Abbas Afshar & Mohamad Amin Tavakoli & Ali Khodagholi, 2020. "Multi-Objective Hydro-Economic Modeling for Sustainable Groundwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1855-1869, April.
    12. Hamid Kardan Moghaddam & Mohammad Ebrahim Banihabib & Saman Javadi & Timothy O. Randhir, 2021. "A framework for the assessment of qualitative and quantitative sustainable development of groundwater system," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1096-1110, November.
    13. Mike Spiliotis & Dionissis Latinopoulos & Lampros Vasiliades & Kyriakos Rafailidis & Eleni Koutsokera & Ifigenia Kagalou, 2022. "Flexible Goal Programming for Supporting Lake Karla’s (Greece) Sustainable Operation," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    14. Kyeung Kim & Hakkwan Kim & Hyunji Lee & Sang-Min Jun & Soonho Hwang & Jung-Hun Song & Moon-Seong Kang, 2021. "Development and Assessment of Watershed Management Indicators Using the Budyko Framework Parameter," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    15. Miguel Pérez-Martín & Teodoro Estrela & Joaquín Andreu & Javier Ferrer, 2014. "Modeling Water Resources and River-Aquifer Interaction in the Júcar River Basin, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4337-4358, September.
    16. de Castro-Pardo, Mónica & Cabello, José Manuel & Martín, José María & Ruiz, Francisco, 2023. "A multi reference point based index to assess and monitor European water policies from a sustainability approach," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    17. Jean-Daniel Rinaudo & Guillermo Donoso, 2019. "State, market or community failure? Untangling the determinants of groundwater depletion in Copiapó (Chile)," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 35(2), pages 283-304, March.
    18. A. Osei-Twumasi & R. A. Falconer & R. Ahmadian, 2016. "Coupling Surface Water and Groundwater Flows in a Laboratory Model Using Foam as Artificial Groundwater Material," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1449-1463, March.
    19. Mojid, Mohammad A. & Mainuddin, Mohammed & Murad, Khandakar Faisal Ibn & Kirby, John Mac, 2021. "Water usage trends under intensive groundwater-irrigated agricultural development in a changing climate – Evidence from Bangladesh," Agricultural Water Management, Elsevier, vol. 251(C).
    20. Akuriba, Margaret Atosina & Haagsma, Rein & Heerink, Nico & Dittoh, Saa, 2020. "Assessing governance of irrigation systems: A view from below," World Development Perspectives, Elsevier, vol. 19(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5618-:d:810041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.