IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2439-d754105.html
   My bibliography  Save this article

A Systematic Literature Review of Blockchain-Enabled Supply Chain Traceability Implementations

Author

Listed:
  • Thomas K. Dasaklis

    (School of Social Sciences, Hellenic Open University, 26335 Patra, Greece)

  • Theodore G. Voutsinas

    (School of Social Sciences, Hellenic Open University, 26335 Patra, Greece)

  • Giannis T. Tsoulfas

    (Department of Agribusiness and Supply Chain Management, Agricultural University of Athens, 32200 Thiva, Greece)

  • Fran Casino

    (Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, 43007 Tarragona, Spain
    Information Management Systems Institute, Athena Research Center, 15125 Marousi, Greece)

Abstract

In recent years, traceability systems have been developed as practical tools for improving supply chain (SC) transparency and visibility, especially in health and safety-sensitive sectors like food and pharmaceuticals. Blockchain-related SC traceability research has received significant attention during the last several years, and arguably blockchain is currently the most promising technology for providing traceability-related services in SC networks. This paper provides a systematic literature review of the various technical implementation aspects of blockchain-enabled SC traceability systems. We apply different drivers for classifying the selected literature, such as (a) the various domains of the available blockchain-enabled SC traceability systems and relevant methodologies applied; (b) the implementation maturity of these traceability systems along with technical implementation details; and (c) the sustainability perspective (economic, environmental, social) prevalent to these implementations. We provide key takeaways regarding the open issues and challenges of current blockchain traceability implementations and fruitful future research areas. Despite the significant volume and plethora of blockchain-enabled SC traceability systems, academia has so far focused on unstructured experimentation of blockchain-associated SC traceability solutions, and there is a clear need for developing and testing real-life traceability solutions, especially taking into account feasibility and cost-related SC aspects.

Suggested Citation

  • Thomas K. Dasaklis & Theodore G. Voutsinas & Giannis T. Tsoulfas & Fran Casino, 2022. "A Systematic Literature Review of Blockchain-Enabled Supply Chain Traceability Implementations," Sustainability, MDPI, vol. 14(4), pages 1-30, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2439-:d:754105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabriella M. Hastig & ManMohan S. Sodhi, 2020. "Blockchain for Supply Chain Traceability: Business Requirements and Critical Success Factors," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 935-954, April.
    2. Ozgur Kabadurmus & Mehmet S. Erdogan, 2020. "Sustainable, multimodal and reliable supply chain design," Annals of Operations Research, Springer, vol. 292(1), pages 47-70, September.
    3. Wang, H. & Pan, Chen & Wang, Qunwei & Zhou, P., 2020. "Assessing sustainability performance of global supply chains: An input-output modeling approach," European Journal of Operational Research, Elsevier, vol. 285(1), pages 393-404.
    4. Amit Arora & Anshu Arora & Julius Anyu & John R. McIntyre, 2021. "Global Value Chains’ Disaggregation through Supply Chain Collaboration, Market Turbulence, and Performance Outcomes," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    5. Panagiotis Reklitis & Damianos P. Sakas & Panagiotis Trivellas & Giannis T. Tsoulfas, 2021. "Performance Implications of Aligning Supply Chain Practices with Competitive Advantage: Empirical Evidence from the Agri-Food Sector," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    6. Melek Akın Ateş & Robert Suurmond & Davide Luzzini & Daniel Krause, 2022. "Order from chaos: A meta‐analysis of supply chain complexity and firm performance," Journal of Supply Chain Management, Institute for Supply Management, vol. 58(1), pages 3-30, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Zhang & Yaoqun Xu & Yi Zheng, 2024. "Blockchain Traceability Adoption in Low-Carbon Supply Chains: An Evolutionary Game Analysis," Sustainability, MDPI, vol. 16(5), pages 1-23, February.
    2. Syaiful Anwar & Tomy Perdana & Meddy Rachmadi & Trisna Insan Noor, 2023. "Product Traceability and Supply Chain Sustainability of Black Soybeans as Raw Materials for Soy Sauce in Maintaining Quality and Safety," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    3. Esraa Esam Alharasis & Hossam Haddad & Maha Shehadeh & Ahmad Saleem Tarawneh, 2022. "Abnormal Monitoring Costs Charged for Auditing Fair Value Model: Evidence from Jordanian Finance Industry," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    4. Sotiris P. Gayialis & Evripidis P. Kechagias & Georgios A. Papadopoulos & Nikolaos A. Panayiotou, 2022. "A Business Process Reference Model for the Development of a Wine Traceability System," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    5. Jing-Yan Ma & Lei Shi & Tae-Won Kang, 2022. "The Effect of Digital Transformation on the Pharmaceutical Sustainable Supply Chain Performance: The Mediating Role of Information Sharing and Traceability Using Structural Equation Modeling," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    6. Jacob Lohmer & Elias Ribeiro da Silva & Rainer Lasch, 2022. "Blockchain Technology in Operations & Supply Chain Management: A Content Analysis," Sustainability, MDPI, vol. 14(10), pages 1-88, May.
    7. Xin Zhang & Yue Li & Xiangzhen Peng & Zhiyao Zhao & Jiaqi Han & Jiping Xu, 2022. "Information Traceability Model for the Grain and Oil Food Supply Chain Based on Trusted Identification and Trusted Blockchain," IJERPH, MDPI, vol. 19(11), pages 1-21, May.
    8. Syaiful Anwar & Tomy Perdana & Meddy Rachmadi & Trisna Insan Noor, 2022. "Traceability Information Model for Sustainability of Black Soybean Supply Chain: A Systematic Literature Review," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    9. Sarah Katharina Kraft & Florian Kellner, 2022. "Can Blockchain Be a Basis to Ensure Transparency in an Agricultural Supply Chain?," Sustainability, MDPI, vol. 14(13), pages 1-17, July.
    10. Bai, Chunguang & Sarkis, Joseph, 2022. "A critical review of formal analytical modeling for blockchain technology in production, operations, and supply chains: Harnessing progress for future potential," International Journal of Production Economics, Elsevier, vol. 250(C).
    11. Jiping Xu & Jiaqi Han & Zhibo Qi & Zixuan Jiang & Ke Xu & Minzhang Zheng & Xin Zhang, 2022. "A Reliable Traceability Model for Grain and Oil Quality Safety Based on Blockchain and Industrial Internet," Sustainability, MDPI, vol. 14(22), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    2. Lai, Kee-hung & Feng, Yunting & Zhu, Qinghua, 2023. "Digital transformation for green supply chain innovation in manufacturing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Ke Zhang & Xingwei Wang, 2021. "Pollution Haven Hypothesis of Global CO 2 , SO 2 , NO x —Evidence from 43 Economies and 56 Sectors," IJERPH, MDPI, vol. 18(12), pages 1-27, June.
    4. Maximilian Klöckner & Christoph G. Schmidt & Stephan M. Wagner, 2022. "When Blockchain Creates Shareholder Value: Empirical Evidence from International Firm Announcements," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 46-64, January.
    5. Wang, Chengfu & Chen, Xiangfeng & Xu, Xun & Jin, Wei, 2023. "Financing and operating strategies for blockchain technology-driven accounts receivable chains," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1279-1295.
    6. Jamalnia, Aboozar & Gong, Yu & Govindan, Kannan, 2023. "Sub-supplier's sustainability management in multi-tier supply chains: A systematic literature review on the contingency variables, and a conceptual framework," International Journal of Production Economics, Elsevier, vol. 255(C).
    7. Yiming Zhuang & Meltem Denizel & Frank Montabon, 2023. "Examining Firms’ Sustainability Frontier: Efficiency in Reaching the Triple Bottom Line," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    8. Suyuan Luo & Tsan‐Ming Choi, 2022. "E‐commerce supply chains with considerations of cyber‐security: Should governments play a role?," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2107-2126, May.
    9. Sachin Kumar Mangla & Yiğit Kazançoğlu & Abdullah Yıldızbaşı & Cihat Öztürk & Ahmet Çalık, 2022. "A conceptual framework for blockchain‐based sustainable supply chain and evaluating implementation barriers: A case of the tea supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3693-3716, December.
    10. Yuling Sun & Xiaomei Song & Yihao Jiang & Jian Guo, 2023. "Strategy Analysis of Fresh Agricultural Enterprises in a Competitive Circumstance: The Impact of Blockchain and Consumer Traceability Preferences," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    11. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    12. Majid Azadi & Zohreh Moghaddas & Reza Farzipoor Saen & Angappa Gunasekaran & Sachin Kumar Mangla & Alessio Ishizaka, 2023. "Using network data envelopment analysis to assess the sustainability and resilience of healthcare supply chains in response to the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 328(1), pages 107-150, September.
    13. Li, Yongqing & Ma, Huimin & Xiong, Jie & Zhang, Jinlong & Ponnamma Divakaran, Pradeep Kumar, 2022. "Manufacturing structure, transformation path, and performance evolution: An industrial network perspective," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    14. Deqing Ma & Pengcheng Ma & Jinsong Hu, 2024. "The Impact of Blockchain Technology Adoption on an E-Commerce Closed-Loop Supply Chain Considering Consumer Trust," Sustainability, MDPI, vol. 16(4), pages 1-41, February.
    15. Shou, Yongyi & Zhao, Xinyu & Dai, Jing & Xu, Dong, 2021. "Matching traceability and supply chain coordination: Achieving operational innovation for superior performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    16. Weili Yin & Wenxue Ran, 2023. "Explaining Firm Performance During the COVID-19 With fsQCA: The Role of Supply Network Complexity, Inventory Turns, and Geographic Dispersion," SAGE Open, , vol. 13(2), pages 21582440231, June.
    17. Sunghun Chung & Keongtae Kim & Chul Ho Lee & Wonseok Oh, 2023. "Interdependence between online peer‐to‐peer lending and cryptocurrency markets and its effects on financial inclusion," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1939-1957, June.
    18. Yanling Yang & Yanling Zheng & Guojie Xie & Yu Tian, 2022. "The Influence Mechanism of Strategic Partnership on Enterprise Performance: Exploring the Chain Mediating Role of Information Sharing and Supply Chain Flexibility," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    19. Ma, Deqing & Hu, Jinsong, 2022. "The optimal combination between blockchain and sales format in an internet platform-based closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 254(C).
    20. Luis Francisco López-Castro & Elyn L. Solano-Charris, 2021. "Integrating Resilience and Sustainability Criteria in the Supply Chain Network Design. A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2439-:d:754105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.