IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2066-d747196.html
   My bibliography  Save this article

BIM-Based Green Hospital Building Performance Pre-Evaluation: A Case Study

Author

Listed:
  • Zhaoxi Zhan

    (Department of Civil Engineering, College of Civil Engineering, Huaqiao University, Xiamen 361021, China)

  • Wenna Xu

    (Department of Civil Engineering, College of Civil Engineering, Huaqiao University, Xiamen 361021, China)

  • Lin Xu

    (Department of Civil Engineering, College of Civil Engineering, Huaqiao University, Xiamen 361021, China)

  • Xinyue Qi

    (Department of Civil Engineering, College of Civil Engineering, Huaqiao University, Xiamen 361021, China)

  • Wenjie Song

    (Department of Civil Engineering, College of Civil Engineering, Huaqiao University, Xiamen 361021, China)

  • Chen Wang

    (Department of Civil Engineering, College of Civil Engineering, Huaqiao University, Xiamen 361021, China)

  • Ziye Huang

    (Department of Human Geography and Urban and Rural Planning, College of Tourism, Huaqiao University, Quanzhou 362021, China)

Abstract

With ecological problems and energy crises intensifying today, greening is essential to sustainable development. Compared with other types of buildings, hospital buildings account for a relatively larger proportion of building energy consumption. In order to realize the rapid cycle optimization of a green hospital project in the design stage and improve the green grade of the building, a pre-evaluation Building Information Model (BIM) of green hospital building performance was established in this study. Firstly, the literature review and expert consultation established the building performance pre-evaluation index system for green hospitals. Then, BIM technology is taken to extract data needed for building a performance pre-evaluation system, and the Cloud Model and the Matter–Element Extension Theory are used to build models. The final green grade calculation is realized in MATLAB. Finally, the Maluan Bay Hospital is taken as an example to test the applicability and effectiveness of the proposed model. The results show that the green hospital building performance pre-evaluation model has advantages of simulation, cyclic optimization and fuzzy quantification, which can effectively guide the design and construction of a green hospital.

Suggested Citation

  • Zhaoxi Zhan & Wenna Xu & Lin Xu & Xinyue Qi & Wenjie Song & Chen Wang & Ziye Huang, 2022. "BIM-Based Green Hospital Building Performance Pre-Evaluation: A Case Study," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2066-:d:747196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengda Jia & Ravi Srinivasan, 2020. "Building Performance Evaluation Using Coupled Simulation of EnergyPlus™ and an Occupant Behavior Model," Sustainability, MDPI, vol. 12(10), pages 1-13, May.
    2. Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
    3. Jun Dong & Dongxue Wang & Dongran Liu & Palidan Ainiwaer & Linpeng Nie, 2019. "Operation Health Assessment of Power Market Based on Improved Matter-Element Extension Cloud Model," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    4. Ru Ji & Shilin Qu, 2019. "Investigation and Evaluation of Energy Consumption Performance for Hospital Buildings in China," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    5. Ferrari, S. & Zoghi, M. & Blázquez, T. & Dall’O’, G., 2022. "New Level(s) framework: Assessing the affinity between the main international Green Building Rating Systems and the european scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele & Palombo, Adolfo, 2014. "Dynamic energy performance analysis: Case study for energy efficiency retrofits of hospital buildings," Energy, Elsevier, vol. 78(C), pages 555-572.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jungsik Choi & Sejin Lee, 2023. "A Suggestion of the Alternatives Evaluation Method through IFC-Based Building Energy Performance Analysis," Sustainability, MDPI, vol. 15(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    2. Małgorzata Cygańska & Magdalena Kludacz-Alessandri, 2021. "Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland," Energies, MDPI, vol. 14(22), pages 1-24, November.
    3. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    4. Fatma Seyma Keskin & Pedro Martinez-Vazquez & Charalampos Baniotopoulos, 2021. "An Integrated Method to Evaluate Sustainability for Vulnerable Buildings Addressing Life Cycle Embodied Impacts and Resource Use," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    5. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    6. Louise Sawyer & Simon Kemp & Patrick James & Michael Harper, 2021. "Assessment of a Nurse Led Energy Behavior Change Intervention in an NHS Community Hospital Ward," Energies, MDPI, vol. 14(20), pages 1-17, October.
    7. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    8. Nicholas Gurieff & Donna Green & Ilpo Koskinen & Mathew Lipson & Mark Baldry & Andrew Maddocks & Chris Menictas & Jens Noack & Behdad Moghtaderi & Elham Doroodchi, 2020. "Healthy Power: Reimagining Hospitals as Sustainable Energy Hubs," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    9. Rosa Francesca De Masi & Nicoletta Del Regno & Antonio Gigante & Silvia Ruggiero & Alessandro Russo & Francesco Tariello & Giuseppe Peter Vanoli, 2023. "The Importance of Investing in the Energy Refurbishment of Hospitals: Results of a Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    10. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
    11. Barbetta, Gian Paolo & Canino, Paolo & Cima, Stefano, 2015. "The impact of energy audits on energy efficiency investment of public owners. Evidence from Italy," Energy, Elsevier, vol. 93(P1), pages 1199-1209.
    12. Klemeš, Jiří Jaromír & Fan, Yee Van & Jiang, Peng, 2020. "The energy and environmental footprints of COVID-19 fighting measures – PPE, disinfection, supply chains," Energy, Elsevier, vol. 211(C).
    13. Carmen María Calama-González & Ángel Luis León-Rodríguez & Rafael Suárez, 2018. "Daylighting and Energy Performance Evaluation of an Egg-Crate Device for Hospital Building Retrofitting in a Mediterranean Climate," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    14. Chwieduk, Dorota A., 2017. "Towards modern options of energy conservation in buildings," Renewable Energy, Elsevier, vol. 101(C), pages 1194-1202.
    15. Jianhua Cheng & Xiaolong Yang & Hui Wang & Hujun Li & Xuan Lin & Yapeng Guo, 2022. "Evaluation of the Emergency Capability of Subway Shield Construction Based on Cloud Model," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    16. Andrea Gabaldón Moreno & Fredy Vélez & Beril Alpagut & Patxi Hernández & Cecilia Sanz Montalvillo, 2021. "How to Achieve Positive Energy Districts for Sustainable Cities: A Proposed Calculation Methodology," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    17. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    18. Calise, F. & Cappiello, F. & D'Agostino, D. & Vicidomini, M., 2021. "Heat metering for residential buildings: A novel approach through dynamic simulations for the calculation of energy and economic savings," Energy, Elsevier, vol. 234(C).
    19. Esteban A. Soto & Andrea Hernandez-Guzman & Alexander Vizcarrondo-Ortega & Amaya McNealey & Lisa B. Bosman, 2022. "Solar Energy Implementation for Health-Care Facilities in Developing and Underdeveloped Countries: Overview, Opportunities, and Challenges," Energies, MDPI, vol. 15(22), pages 1-17, November.
    20. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2024. "A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell," Energies, MDPI, vol. 17(5), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2066-:d:747196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.