IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p822-d722795.html
   My bibliography  Save this article

Technical and Economic Analysis of Modernization of Solar Power Plant: A Case Study from the Republic of Cuba

Author

Listed:
  • Emiliia Iakovleva

    (General Electrical Engineering Department, Saint Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia)

  • Daniel Guerra

    (General Electrical Engineering Department, Saint Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia)

  • Pavel Tcvetkov

    (Department of Economics, Organization and Management, Saint Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia)

  • Yaroslav Shklyarskiy

    (General Electrical Engineering Department, Saint Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia)

Abstract

The problem of increasing the efficiency of existing power plants is relevant for many countries. Solar power plants built at the end of the 20th century require, as their shelf lives have now expired, not only the replacement of the solar modules, but also the modernization of their component composition. This is due to the requirements to improve the efficiency of power plants to ensure the expansion of renewable energy technologies. This article presents a technical and economic analysis of the choice of solar power plant modernization method, which consists of (1) a method for calculating the amount of power generation; (2) the modeling of solar power plants under specific climatic conditions; (3) the analysis of electricity generation using different types of PV modules and solar radiation trapping technologies in Matlab/Simulink; and (4) the technical and economic analysis of a 2.5 MW solar power plant in the Republic of Cuba (in operation since 2015), for which four different modernization options were considered. All the scenarios differ in the depth of modernization; the results of the analysis were compared with the existing plant. The results of the study showed that the different modernization scenarios respond differently to changes in the inputted technical and economic parameters (cost per kWh, inflation rate, losses, and power plant efficiency). The maximum NPV deviations among the considered scenarios are: a 1% increase in inflation reduces NPV by 2%; a decrease in losses from 20% to 10% increases the NPV by 2.5%; a change in cost from EUR 0.05 to EUR 0.1 increases the NPV by more than 3.5 times. The dependence of the economic results was also tested as a function of three factors: solar module efficiency, inflation, and the price per 1 kWh. It was found that the greatest influence on the NPV of the proposed model is the price per 1 kWh. Based on this analysis, an algorithm was developed to choose the most effective scenario for the conditions of the Republic of Cuba for the modernization of the existing power plants.

Suggested Citation

  • Emiliia Iakovleva & Daniel Guerra & Pavel Tcvetkov & Yaroslav Shklyarskiy, 2022. "Technical and Economic Analysis of Modernization of Solar Power Plant: A Case Study from the Republic of Cuba," Sustainability, MDPI, vol. 14(2), pages 1-23, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:822-:d:722795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pavel Tcvetkov, 2021. "Climate Policy Imbalance in the Energy Sector: Time to Focus on the Value of CO 2 Utilization," Energies, MDPI, vol. 14(2), pages 1-22, January.
    2. Burić, Melita & Grgurić, Sanja & Mikulčić, Hrvoje & Wang, Xuebin, 2021. "A numerical investigation of tidal current energy resource potential in a sea strait," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bohan Zhang & Jianfu Ma & Muhammad Asghar Khan & Valentina Repnikova & Kseniia Shidlovskaya & Sergey Barykin & Muhammad Salman Ahmad, 2023. "The Effect of Economic Policy Uncertainty on Foreign Direct Investment in the Era of Global Value Chain: Evidence from the Asian Countries," Sustainability, MDPI, vol. 15(7), pages 1-21, April.
    2. Marina A. Nevskaya & Semen M. Raikhlin & Victoriya V. Vinogradova & Victor V. Belyaev & Mark M. Khaikin, 2023. "A Study of Factors Affecting National Energy Efficiency," Energies, MDPI, vol. 16(13), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan Li & Beibei Shi & Rong Kang, 2023. "Analysis of the Coupling Effect and Space-Time Difference between China’s Digital Economy Development and Carbon Emissions Reduction," IJERPH, MDPI, vol. 20(1), pages 1-25, January.
    2. Agnieszka Sompolska-Rzechuła & Agnieszka Kurdyś-Kujawska, 2021. "Towards Understanding Interactions between Sustainable Development Goals: The Role of Climate-Well-Being Linkages. Experiences of EU Countries," Energies, MDPI, vol. 14(7), pages 1-20, April.
    3. Fairley, Iain & Williamson, Benjamin J. & McIlvenny, Jason & King, Nicholas & Masters, Ian & Lewis, Matthew & Neill, Simon & Glasby, David & Coles, Daniel & Powell, Ben & Naylor, Keith & Robinson, Max, 2022. "Drone-based large-scale particle image velocimetry applied to tidal stream energy resource assessment," Renewable Energy, Elsevier, vol. 196(C), pages 839-855.
    4. Alexey Cherepovitsyn & Evgeniya Rutenko, 2022. "Strategic Planning of Oil and Gas Companies: The Decarbonization Transition," Energies, MDPI, vol. 15(17), pages 1-26, August.
    5. Alexander Lavrik & Yuri Zhukovskiy & Pavel Tcvetkov, 2021. "Optimizing the Size of Autonomous Hybrid Microgrids with Regard to Load Shifting," Energies, MDPI, vol. 14(16), pages 1-19, August.
    6. Simon Wenninger & Christian Wiethe, 2022. "The Human’s Comfort Mystery—Supporting Energy Transition with Light-Color Dimmable Room Lighting," Sustainability, MDPI, vol. 14(4), pages 1-10, February.
    7. Donato Morea & Mohamad El Mehtedi & Pasquale Buonadonna, 2023. "Energy Context: Analysis of Selected Studies and Future Research Developments," Energies, MDPI, vol. 16(3), pages 1-6, February.
    8. Roxana Voicu-Dorobanțu & Clara Volintiru & Maria-Floriana Popescu & Vlad Nerău & George Ștefan, 2021. "Tackling Complexity of the Just Transition in the EU: Evidence from Romania," Energies, MDPI, vol. 14(5), pages 1-22, March.
    9. Valentin Morenov, 2023. "Advances in Oil and Gas Production: A Viewpoint," Energies, MDPI, vol. 16(3), pages 1-3, January.
    10. Manav Khanna & Natalia Marzia Gusmerotti & Marco Frey, 2022. "The Relevance of the Circular Economy for Climate Change: An Exploration through the Theory of Change Approach," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    11. Yuriy Zhukovskiy & Pavel Tsvetkov & Aleksandra Buldysko & Yana Malkova & Antonina Stoianova & Anastasia Koshenkova, 2021. "Scenario Modeling of Sustainable Development of Energy Supply in the Arctic," Resources, MDPI, vol. 10(12), pages 1-25, December.
    12. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Gianmaria Giannini & Victor Ramos & Paulo Rosa-Santos & Tomás Calheiros-Cabral & Francisco Taveira-Pinto, 2022. "Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region," Sustainability, MDPI, vol. 14(5), pages 1-24, February.
    14. Nikolay Tsvetkov & Stanislav Boldyryev & Aleksandr Shilin & Yuriy Krivoshein & Aleksandr Tolstykh, 2022. "Hardware and Software Implementation for Solar Hot Water System in Northern Regions of Russia," Energies, MDPI, vol. 15(4), pages 1-18, February.
    15. Adam Sulich & Letycja Sołoducho-Pelc, 2022. "Changes in Energy Sector Strategies: A Literature Review," Energies, MDPI, vol. 15(19), pages 1-26, September.
    16. Natalia Romasheva & Diana Dmitrieva, 2021. "Energy Resources Exploitation in the Russian Arctic: Challenges and Prospects for the Sustainable Development of the Ecosystem," Energies, MDPI, vol. 14(24), pages 1-31, December.
    17. Amanda Harker Steele & Travis Warner & Derek Vikara & Allison Guinan & Peter Balash, 2021. "Comparative Analysis of Carbon Capture and Storage Finance Gaps and the Social Cost of Carbon," Energies, MDPI, vol. 14(11), pages 1-24, May.
    18. Kyaw Zay Ya & Boris Goryachev & Arkadiy Adigamov & Karina Nurgalieva & Igor Narozhnyy, 2022. "Thermodynamics and Electrochemistry of the Interaction of Sphalerite with Iron (II)-Bearing Compounds in Relation to Flotation," Resources, MDPI, vol. 11(12), pages 1-10, November.
    19. Alexey Cherepovitsyn & Aleksei Kazanin & Evgeniya Rutenko, 2023. "Strategic Priorities for Green Diversification of Oil and Gas Companies," Energies, MDPI, vol. 16(13), pages 1-17, June.
    20. Natalya Romasheva & Alina Cherepovitsyna, 2023. "Renewable Energy Sources in Decarbonization: The Case of Foreign and Russian Oil and Gas Companies," Sustainability, MDPI, vol. 15(9), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:822-:d:722795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.