IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16486-d998344.html
   My bibliography  Save this article

Spatial Distribution Characteristics of Soil Salt Ions in Tumushuke City, Xinjiang

Author

Listed:
  • Xuemei Jiang

    (College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China)

  • Yuwei Ma

    (College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China)

  • Gang Li

    (College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China)

  • Wei Huang

    (Xinjiang Qiankun Engineering Construction Group, Tumushuke City 844000, China)

  • Hongyan Zhao

    (College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China)

  • Guangming Cao

    (Xinjiang Qiankun Engineering Construction Group, Tumushuke City 844000, China)

  • Aiqin Wang

    (College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China)

Abstract

Concrete durability in saline soil areas is a global problem. Both SO 4 2− and Cl − in saline soil seriously affect the durability of concrete and restrict the sustainable development of engineering construction. Soil samples were collected from Tumushuke city, Xinjiang, and the concentrations of SO 4 2− and Cl − in the soil were measured. Classical statistics and geostatistics methods were combined to analyze the distribution characteristics of the soil salts. Additionally, the kriging interpolation method was used to draw a salt distribution map. The results showed that the average contents of SO 4 2− and Cl − in the soil of this area were 7037.08 and 6018.94 mg/kg, respectively. SO 4 2− exhibited moderate variability at depths of 30–60 and 60–100 cm in the soil and strong variability in the surface layer; Cl − exhibited strong variability at depths of 0–30, 30–60, and 60–100 cm in the soil. The SO 4 2− and Cl − concentrations exhibited high spatial correlation and showed regular changes. The horizontal distribution patterns of “low in the south and high in the north” and “high in the east and low in the west” were observed. Regarding the vertical distribution, the profiles of the SO 4 2− and Cl − contents in the soils primarily exhibited “surface aggregation” distribution characteristics. Therefore, according to the spatial distribution characteristics of SO 4 2− and Cl − , local concrete engineering construction can adopt different anti-erosion measures to enhance the safety and durability of concrete structures.

Suggested Citation

  • Xuemei Jiang & Yuwei Ma & Gang Li & Wei Huang & Hongyan Zhao & Guangming Cao & Aiqin Wang, 2022. "Spatial Distribution Characteristics of Soil Salt Ions in Tumushuke City, Xinjiang," Sustainability, MDPI, vol. 14(24), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16486-:d:998344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao, Rongjiang & Yang, Jingsong, 2010. "Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method," Agricultural Water Management, Elsevier, vol. 97(12), pages 1961-1970, November.
    2. Sheng Li & Li Lu & Yuan Gao & Yun Zhang & Deyou Shen, 2022. "An Analysis on the Characteristics and Influence Factors of Soil Salinity in the Wasteland of the Kashgar River Basin," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    3. Qianqian Liu & Gulimire Hanati & Sulitan Danierhan & Guangming Liu & Yin Zhang & Zhiping Zhang, 2020. "Identifying Seasonal Accumulation of Soil Salinity with Three-Dimensional Mapping—A Case Study in Cold and Semiarid Irrigated Fields," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    4. Wang, Ruoshui & Wan, Shuqin & Sun, Jiaxia & Xiao, Huijie, 2018. "Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation," Agricultural Water Management, Elsevier, vol. 209(C), pages 20-31.
    5. Li Xu & Hongru Du & Xiaolei Zhang, 2019. "Spatial Distribution Characteristics of Soil Salinity and Moisture and Its Influence on Agricultural Irrigation in the Ili River Valley, China," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zengming Ke & Xiaoli Liu & Lihui Ma & Feng Jiao & Zhanli Wang, 2023. "Spatial Distribution of Soil Water and Salt in a Slightly Salinized Farmland," Sustainability, MDPI, vol. 15(8), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Oana Stan & Radu Gabriel Pîrnău & Bogdan Roșca & Doina Smaranda Sirbu-Radasanu, 2022. "Risk of Salinization in the Agricultural Soils of Semi-Arid Regions: A Case Study from Moldavian Plain (NE Romania)," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    2. Lin, Xiaomin & Wang, Zhen & Li, Jiusheng, 2022. "Spatial variability of salt content caused by nonuniform distribution of irrigation and soil properties in drip irrigation subunits with different lateral layouts under arid environments," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Li Zhao & Wanjing Li & Guang Yang & Ke Yan & Xinlin He & Fadong Li & Yongli Gao & Lijun Tian, 2021. "Moisture, Temperature, and Salinity of a Typical Desert Plant ( Haloxylon ammodendron ) in an Arid Oasis of Northwest China," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    4. Xing Wang & Hailong Sun & Changming Tan & Xiaowen Wang & Min Xia, 2021. "Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    5. Abderraouf Benslama & Kamel Khanchoul & Fouzi Benbrahim & Sana Boubehziz & Faredj Chikhi & Jose Navarro-Pedreño, 2020. "Monitoring the Variations of Soil Salinity in a Palm Grove in Southern Algeria," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    6. Wang, He & Zheng, Chunlian & Ning, Songrui & Cao, Caiyun & Li, Kejiang & Dang, Hongkai & Wu, Yuqing & Zhang, Junpeng, 2023. "Impacts of long-term saline water irrigation on soil properties and crop yields under maize-wheat crop rotation," Agricultural Water Management, Elsevier, vol. 286(C).
    7. Sinda Bekir & Rahma Inès Zoghlami & Khaoula Boudabbous & Mohamed Naceur Khelil & Mohammed Moussa & Rim Ghrib & Oumaima Nahdi & Emna Trabelsi & Habib Bousnina, 2022. "Soil Physicochemical Changes as Modulated by Treated Wastewater after Medium-and Long-Term Irrigations: A Case Study from Tunisia," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
    8. Yasin ul Haq & Muhammad Shahbaz & H. M. Shahzad Asif & Ali Al-Laith & Wesam H. Alsabban, 2023. "Spatial Mapping of Soil Salinity Using Machine Learning and Remote Sensing in Kot Addu, Pakistan," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    9. Li Lu & Sheng Li & Rong Wu & Deyou Shen, 2022. "Study on the Scale Effect of Spatial Variation in Soil Salinity Based on Geostatistics: A Case Study of Yingdaya River Irrigation Area," Land, MDPI, vol. 11(10), pages 1-19, September.
    10. Gebremeskel, Gebremedhin & Gebremicael, T.G. & Kifle, Mulubrehan & Meresa, Esayas & Gebremedhin, Teferi & Girmay, Abbadi, 2018. "Salinization pattern and its spatial distribution in the irrigated agriculture of Northern Ethiopia: An integrated approach of quantitative and spatial analysis," Agricultural Water Management, Elsevier, vol. 206(C), pages 147-157.
    11. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    12. Xiao, Chao & Ji, Qingyuan & Zhang, Fucang & Li, Yi & Fan, Junliang & Hou, Xianghao & Yan, Fulai & Liu, Xiaoqiang & Gong, Kaiyuan, 2023. "Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China," Agricultural Water Management, Elsevier, vol. 279(C).
    13. Dmytro Onopriienko & Tetiana Makarova & Hennadii Hapich & Yelizaveta Chernysh & Hynek Roubík, 2024. "Agroecological Transformation in the Salt Composition of Soil under the Phosphogypsum Influence on Irrigated Lands in Ukraine," Agriculture, MDPI, vol. 14(3), pages 1-19, March.
    14. Yang Bai & Chengqian Sun & Li Wang & Yang Wu & Jiaman Qin & Xi Zhang, 2022. "The Characteristics of Net Anthropogenic Nitrogen and Phosphorus Inputs (NANI/NAPI) and TN/TP Export Fluxes in the Guangdong Section of the Pearl River (Zhujiang) Basin," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    15. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
    16. Guo, Leilei & Wang, Zaimin & Šimůnek, Jirka & He, Yujiang & Muhamma, Rizwan, 2023. "Optimizing the strategies of mulched brackish drip irrigation under a shallow water table in Xinjiang, China, using HYDRUS-3D," Agricultural Water Management, Elsevier, vol. 283(C).
    17. Li, Jingang & Chen, Jing & He, Pingru & Chen, Dan & Dai, Xiaoping & Jin, Qiu & Su, Xiaoyue, 2022. "The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia," Agricultural Water Management, Elsevier, vol. 274(C).
    18. Hamideh Nouri & Sattar Chavoshi Borujeni & Sina Alaghmand & Sharolyn J. Anderson & Paul C. Sutton & Somayeh Parvazian & Simon Beecham, 2018. "Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    19. Mohamed G. Eltarabily & Abdulrahman Amer & Mohammad Farzamian & Fethi Bouksila & Mohamed Elkiki & Tarek Selim, 2024. "Time-Lapse Electromagnetic Conductivity Imaging for Soil Salinity Monitoring in Salt-Affected Agricultural Regions," Land, MDPI, vol. 13(2), pages 1-21, February.
    20. Xiaoping Chen & Shaoyuan Feng & Zhiming Qi & Matthew W. Sima & Fanjiang Zeng & Lanhai Li & Haomiao Cheng & Hao Wu, 2022. "Optimizing Irrigation Strategies to Improve Water Use Efficiency of Cotton in Northwest China Using RZWQM2," Agriculture, MDPI, vol. 12(3), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16486-:d:998344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.