IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v283y2023ics0378377423001683.html
   My bibliography  Save this article

Optimizing the strategies of mulched brackish drip irrigation under a shallow water table in Xinjiang, China, using HYDRUS-3D

Author

Listed:
  • Guo, Leilei
  • Wang, Zaimin
  • Šimůnek, Jirka
  • He, Yujiang
  • Muhamma, Rizwan

Abstract

Optimizing mulched drip irrigation (MDI) with brackish water, which would benefit both soil and cotton yields, is crucial for arid areas lacking fresh water (FW) resources and having shallow brackish groundwater (BW). The HYDRUS-3D model, simulating three-dimensional soil water and salinity movement, was used to understand better MDI’s effects on the soil environment with shallow groundwater and optimize its operations. Optimized irrigation water amounts varied from 478.5 to 669.9 mm when salt concentrations of irrigation water were 1.01 g/L for FW and 3.0 g/L for BW, reflecting local surface water and groundwater qualities. Irrigation water consumption was evaluated and compared with literature results. The results showed that increasing irrigation frequency reduces water stress more than increasing irrigation water amounts. The low salinity area under the dripper expanded with an increase in the irrigation water amount and decreased with an increase in water salinity. Cotton water and salt stress could be avoided when 66 mm of freshwater was used at the seedling stage when the soil salinity threshold Ce1 was 2.58 g/L, and 412.9 mm of brackish water was used during the other growth stages when Ce2 was 6.62 g/L. Irrigation intervals of 3 days during the flowering and boll-setting stages and 6 days during the other growth stages were recommended. Compared with earlier published results, 1190 m3/ha of surface water and 495 m3/ha of groundwater could be saved in Xinjiang when the above-recommended irrigation strategy is used. Finally, HYDRUS-3D is a valuable and efficient tool for evaluating farmland water and salinity management.

Suggested Citation

  • Guo, Leilei & Wang, Zaimin & Šimůnek, Jirka & He, Yujiang & Muhamma, Rizwan, 2023. "Optimizing the strategies of mulched brackish drip irrigation under a shallow water table in Xinjiang, China, using HYDRUS-3D," Agricultural Water Management, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001683
    DOI: 10.1016/j.agwat.2023.108303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Yaohu & Chen, Ming & Wan, Shuqin, 2010. "Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain," Agricultural Water Management, Elsevier, vol. 97(9), pages 1303-1309, September.
    2. Singh, Yudhveer & Rao, Sajjan Singh & Regar, Panna Lal, 2010. "Deficit irrigation and nitrogen effects on seed cotton yield, water productivity and yield response factor in shallow soils of semi-arid environment," Agricultural Water Management, Elsevier, vol. 97(7), pages 965-970, July.
    3. Feike, Til & Khor, Ling Yee & Mamitimin, Yusuyunjiang & Ha, Nan & Li, Lin & Abdusalih, Nurbay & Xiao, Haifeng & Doluschitz, Reiner, 2017. "Determinants of cotton farmers’ irrigation water management in arid Northwestern China," Agricultural Water Management, Elsevier, vol. 187(C), pages 1-10.
    4. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    5. Grecco, Katarina L. & Miranda, Jarbas H. de & Silveira, Laís K. & van Genuchten, Martinus Th., 2019. "HYDRUS-2D simulations of water and potassium movement in drip irrigated tropical soil container cultivated with sugarcane," Agricultural Water Management, Elsevier, vol. 221(C), pages 334-347.
    6. Singh, Simratpal & Coppi, Luca & Wang, Zijian & Tenuta, Mario & Holländer, Hartmut M., 2019. "Regionalisation of nitrate leaching on pasture land in Southern Manitoba," Agricultural Water Management, Elsevier, vol. 222(C), pages 286-300.
    7. Battikhi, Anwar M. & Hill, Robert W., 1988. "Irrigation scheduling and cantaloupe yield model for the Jordan Valley," Agricultural Water Management, Elsevier, vol. 15(2), pages 177-187, December.
    8. Qi, Zhijuan & Feng, Hao & Zhao, Ying & Zhang, Tibin & Yang, Aizheng & Zhang, Zhongxue, 2018. "Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 219-231.
    9. Tan, Shuai & Wang, Quanjiu & Zhang, Jihong & Chen, Yong & Shan, Yuyang & Xu, Di, 2018. "Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 196(C), pages 99-113.
    10. Wang, Ruoshui & Wan, Shuqin & Sun, Jiaxia & Xiao, Huijie, 2018. "Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation," Agricultural Water Management, Elsevier, vol. 209(C), pages 20-31.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jingang & Chen, Jing & He, Pingru & Chen, Dan & Dai, Xiaoping & Jin, Qiu & Su, Xiaoyue, 2022. "The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Eva Hyánková & Michal Kriška Dunajský & Ondřej Zedník & Ondřej Chaloupka & Miroslava Pumprlová Němcová, 2021. "Irrigation with Treated Wastewater as an Alternative Nutrient Source (for Crop): Numerical Simulation," Agriculture, MDPI, vol. 11(10), pages 1-20, September.
    3. Jasmina Defterdarović & Lana Filipović & Filip Kranjčec & Gabrijel Ondrašek & Diana Kikić & Alen Novosel & Ivan Mustać & Vedran Krevh & Ivan Magdić & Vedran Rubinić & Igor Bogunović & Ivan Dugan & Kre, 2021. "Determination of Soil Hydraulic Parameters and Evaluation of Water Dynamics and Nitrate Leaching in the Unsaturated Layered Zone: A Modeling Case Study in Central Croatia," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    4. Xiaoping Chen & Shaoyuan Feng & Zhiming Qi & Matthew W. Sima & Fanjiang Zeng & Lanhai Li & Haomiao Cheng & Hao Wu, 2022. "Optimizing Irrigation Strategies to Improve Water Use Efficiency of Cotton in Northwest China Using RZWQM2," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    5. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    6. Xiao, Chao & Ji, Qingyuan & Zhang, Fucang & Li, Yi & Fan, Junliang & Hou, Xianghao & Yan, Fulai & Liu, Xiaoqiang & Gong, Kaiyuan, 2023. "Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China," Agricultural Water Management, Elsevier, vol. 279(C).
    7. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    8. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    9. Amayreh, Jumah & Al-Abed, Nassim, 2005. "Developing crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.) under drip irrigation with black plastic mulch," Agricultural Water Management, Elsevier, vol. 73(3), pages 247-254, May.
    10. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    11. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    12. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    13. Ul-Allah, Sami & Rehman, Abdul & Hussain, Mubshar & Farooq, Muhammad, 2021. "Fiber yield and quality in cotton under drought: Effects and management," Agricultural Water Management, Elsevier, vol. 255(C).
    14. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    15. Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    16. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    17. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).
    18. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    20. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.