IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v206y2018icp147-157.html
   My bibliography  Save this article

Salinization pattern and its spatial distribution in the irrigated agriculture of Northern Ethiopia: An integrated approach of quantitative and spatial analysis

Author

Listed:
  • Gebremeskel, Gebremedhin
  • Gebremicael, T.G.
  • Kifle, Mulubrehan
  • Meresa, Esayas
  • Gebremedhin, Teferi
  • Girmay, Abbadi

Abstract

Salinity adversely affects the environment, agro-ecosystems and agricultural productivity of arid and semi-arid regions worldwide. This salinization occurs due to natural, human or both actions on the dynamic earth system. This study was conducted to quantify the magnitude and map the spatial distributions of salinity of the irrigated agriculture in northern Ethiopia. A total of 717 soil and 13 water samples from nine irrigation schemes were used for analysis. The soil samples were collected on a grid basis from 0 to 15 cm and 15–30 cm soil depths in the plant's root zone whilst surface water samples were collected from the irrigation water source, middle and lower cross-sections of the irrigation schemes. These soil and water samples were analyzed quantitatively for 14 salinity parameters and results compared with worldwide standard values. In addition, the spatial analysis was made for three basic salinity parameters of hydrogen ion concentrations (pH), Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR). Even if, there are non-significant variations between soil depths and among the irrigation cross-sections, a salinity is observed at 33% of the schemes. Higher pH average values are spatially concentrated downstream whilst SAR and EC showed inconsistent variations among irrigation schemes. The quantitative and spatial salinity analysis revealed that Gum Selassa, Gereb Kunchi and Tegahne irrigation schemes have potential salinity levels. As a result, salinity management strategies and community-based salinity management approaches that involve farmers’ participation is vital to create a sense of ownership. Irrigation users and decision makers should consider possible measures of minimizing salinity build-up thereby increasing agricultural productivity in a sustainable way.

Suggested Citation

  • Gebremeskel, Gebremedhin & Gebremicael, T.G. & Kifle, Mulubrehan & Meresa, Esayas & Gebremedhin, Teferi & Girmay, Abbadi, 2018. "Salinization pattern and its spatial distribution in the irrigated agriculture of Northern Ethiopia: An integrated approach of quantitative and spatial analysis," Agricultural Water Management, Elsevier, vol. 206(C), pages 147-157.
  • Handle: RePEc:eee:agiwat:v:206:y:2018:i:c:p:147-157
    DOI: 10.1016/j.agwat.2018.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418305869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Rongjiang & Yang, Jingsong, 2010. "Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method," Agricultural Water Management, Elsevier, vol. 97(12), pages 1961-1970, November.
    2. Kifle, Mulubrehan & Gebremicael, T.G. & Girmay, Abbadi & Gebremedihin, Teferi, 2017. "Effect of surge flow and alternate irrigation on the irrigation efficiency and water productivity of onion in the semi-arid areas of North Ethiopia," Agricultural Water Management, Elsevier, vol. 187(C), pages 69-76.
    3. Kifle, Mulubrehan & Gebretsadikan, T.G., 2016. "Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia," Agricultural Water Management, Elsevier, vol. 170(C), pages 133-139.
    4. Yohannes, Degol Fissahaye & Ritsema, C.J. & Solomon, H. & Froebrich, J. & van Dam, J.C., 2017. "Irrigation water management: Farmers’ practices, perceptions and adaptations at Gumselassa irrigation scheme, North Ethiopia," Agricultural Water Management, Elsevier, vol. 191(C), pages 16-28.
    5. Mintesinot, B. & Verplancke, H. & Van Ranst, E. & Mitiku, H., 2004. "Examining traditional irrigation methods, irrigation scheduling and alternate furrows irrigation on vertisols in northern Ethiopia," Agricultural Water Management, Elsevier, vol. 64(1), pages 17-27, January.
    6. Tsegay, Alemtsehay & Vanuytrecht, Eline & Abrha, Berhanu & Deckers, Jozef & Gebrehiwot, Kindeya & Raes, Dirk, 2015. "Sowing and irrigation strategies for improving rainfed tef (Eragrostis tef (Zucc.) Trotter) production in the water scarce Tigray region, Ethiopia," Agricultural Water Management, Elsevier, vol. 150(C), pages 81-91.
    7. Awulachew, Seleshi Bekele, 2007. "Water resources and irrigation development in Ethiopia," IWMI Working Papers H040631, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Bai & Jia Zhou & Jinming Luo & Hongshuang Dou & Ye Zhang, 2023. "Analyzing Driving Factors of Soil Alkalinization Based on Geodetector—A Case in Northeast China," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    2. Qianqian Liu & Gulimire Hanati & Sulitan Danierhan & Guangming Liu & Yin Zhang & Zhiping Zhang, 2020. "Identifying Seasonal Accumulation of Soil Salinity with Three-Dimensional Mapping—A Case Study in Cold and Semiarid Irrigated Fields," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    3. Berhe, Gebremeskel Teklay & Baartman, Jantiene E.M. & Veldwisch, Gert Jan & Grum, Berhane & Ritsema, Coen J., 2022. "Irrigation development and management practices in Ethiopia: A systematic review on existing problems, sustainability issues and future directions," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Weihong Wang & Hefang Jing & Xinxia Guo & Bingyan Dou & Wensheng Zhang, 2023. "Analysis of Water and Salt Spatio-Temporal Distribution along Irrigation Canals in Ningxia Yellow River Irrigation Area, China," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    5. Negash Tessema & Dame Yadeta & Asfaw Kebede & Gebiaw T. Ayele, 2022. "Soil and Irrigation Water Salinity, and Its Consequences for Agriculture in Ethiopia: A Systematic Review," Agriculture, MDPI, vol. 13(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yohannes, Degol Fissahaye & Ritsema, C.J. & Eyasu, Y. & Solomon, H. & van Dam, J.C. & Froebrich, J. & Ritzema, H.P. & Meressa, A., 2019. "A participatory and practical irrigation scheduling in semiarid areas: the case of Gumselassa irrigation scheme in Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 218(C), pages 102-114.
    2. Kifle, Mulubrehan & Gebremicael, T.G. & Girmay, Abbadi & Gebremedihin, Teferi, 2017. "Effect of surge flow and alternate irrigation on the irrigation efficiency and water productivity of onion in the semi-arid areas of North Ethiopia," Agricultural Water Management, Elsevier, vol. 187(C), pages 69-76.
    3. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    4. Srigiri, Srinivasa Reddy & Breuer, Anita & Scheumann, Waltina, 2021. "Mechanisms for governing the water-land-food nexus in the lower Awash River Basin, Ethiopia: Ensuring policy coherence in the implementation of the 2030 Agenda," IDOS Discussion Papers 26/2021, German Institute of Development and Sustainability (IDOS).
    5. Jubaidur Rahman & Monira Yasmin & Fouzia Sultana Shikha & Majharul Islam & Mukaddasul Islam Riad, 2019. "Intercropping Of Potato With Brinjal," Malaysian Journal of Sustainable Agriculture (MJSA), Zibeline International Publishing, vol. 3(2), pages 16-19, February.
    6. Shewit Gebremedhin & Abebe Getahun & Wassie Anteneh & Stijn Bruneel & Peter Goethals, 2018. "A Drivers-Pressure-State-Impact-Responses Framework to Support the Sustainability of Fish and Fisheries in Lake Tana, Ethiopia," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    7. Tran, Thong Anh & Nguyen, Tri Huu & Vo, Thang Tat, 2019. "Adaptation to flood and salinity environments in the Vietnamese Mekong Delta: Empirical analysis of farmer-led innovations," Agricultural Water Management, Elsevier, vol. 216(C), pages 89-97.
    8. Kaihua Liu & Xiyun Jiao & Weihua Guo & Yunhao An & Mohamed Khaled Salahou, 2020. "Improving border irrigation performance with predesigned varied-discharge," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-12, May.
    9. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    10. Dereje Mengistie & Desale Kidane, 2016. "Assessment of the Impact of Small-Scale Irrigation on Household Livelihood Improvement at Gubalafto District, North Wollo, Ethiopia," Agriculture, MDPI, vol. 6(3), pages 1-22, June.
    11. Beyene, Abebech & Cornelis, Wim & Verhoest, Niko E.C. & Tilahun, Seifu & Alamirew, Tena & Adgo, Enyew & De Pue, Jan & Nyssen, Jan, 2018. "Estimating the actual evapotranspiration and deep percolation in irrigated soils of a tropical floodplain, northwest Ethiopia," Agricultural Water Management, Elsevier, vol. 202(C), pages 42-56.
    12. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    13. Belay Z. Abate & Tewodros T. Assefa & Tibebe B. Tigabu & Wubneh B. Abebe & Li He, 2023. "Hydrological Modeling of the Kobo-Golina River in the Data-Scarce Upper Danakil Basin, Ethiopia," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    14. Gebrehaweria Gebregziabher & Karen G. Villholth & Munir A. Hanjra & Muleta Yirga & Regassa E. Namara, 2013. "Cost-benefit analysis and ideas for cost sharing of groundwater irrigation: evidence from north-eastern Ethiopia," Water International, Taylor & Francis Journals, vol. 38(6), pages 852-863, October.
    15. Kassahun, Habtamu Tilahun & Nicholson, Charles F. & Jacobsen, Jette Bredahl & Steenhuis, Tammo S., 2016. "Accounting for user expectations in the valuation of reliable irrigation water access in the Ethiopian highlands," Agricultural Water Management, Elsevier, vol. 168(C), pages 45-55.
    16. Haileselassie, Hailay & Araya, A. & Habtu, Solomon & Meles, Kiros Gebretsadkan & Gebru, Girmay & Kisekka, Isaya & Girma, Atkilt & Hadgu, Kiros Meles & Foster, A.J., 2016. "Exploring optimal farm resources management strategy for Quncho-teff (Eragrostis tef (Zucc.) Trotter) using AquaCrop model," Agricultural Water Management, Elsevier, vol. 178(C), pages 148-158.
    17. Endale Siyoum Demissie & Demisachew Yilma Gashaw & Andarge Alaro Altaye & Solomon S. Demissie & Gebiaw T. Ayele, 2023. "Groundwater Recharge Estimation in Upper Gelana Watershed, South-Western Main Ethiopian Rift Valley," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    18. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    19. Loiskandl, W. & Ruffeis, D. & Schonerklee, M. & Spendlingwimmer, R. & Awulachew, Seleshi Bekele & Boelee, Eline, 2008. "Case study review of investigated irrigation projects in Ethiopia," IWMI Conference Proceedings 246406, International Water Management Institute.
    20. Ashenafi Woldeselassie & Nigussie Dechassa & Yibekal Alemayehu & Tamado Tana & Bobe Bedadi, 2021. "Soil and Water Management Practices as a Strategy to Cope with Climate Change Effects in Smallholder Potato Production in the Eastern Highlands of Ethiopia," Sustainability, MDPI, vol. 13(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:206:y:2018:i:c:p:147-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.