IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16433-d997707.html
   My bibliography  Save this article

Short-Term Load Forecasting with an Ensemble Model Using Densely Residual Block and Bi-LSTM Based on the Attention Mechanism

Author

Listed:
  • Wenhao Chen

    (School of Transportation, Fujian University of Technology, Fuzhou 350118, China)

  • Guangjie Han

    (School of Transportation, Fujian University of Technology, Fuzhou 350118, China
    Department of Information and Communication System, Hohai University, Changzhou 213022, China)

  • Hongbo Zhu

    (School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China)

  • Lyuchao Liao

    (School of Transportation, Fujian University of Technology, Fuzhou 350118, China)

Abstract

Short-term load forecasting (STLF) is essential for urban sustainable development. It can further contribute to the stable operation of the smart grid. With the development of renewable energy, improving STLF accuracy has become a vital task. Nevertheless, most models based on the convolutional neural network (CNN) cannot effectively extract the crucial features from input data. The reason is that the fundamental requirement of adopting the convolutional neural network (CNN) is space invariance, which cannot be satisfied by the received data, limiting the forecasting performance. Thus, this paper proposes an innovative ensemble model that comprises a densely residual block (DRB), bidirectional long short-term memory (Bi-LSTM) layers based on the attention mechanism, and ensemble thinking. Specifically, the DRB is adopted to extract the potential high-dimensional features from different types of data, such as multi-scale load data, temperature data, and calendar data. The extracted features are the input of the Bi-LSTM layer. Then, the adopted attention mechanism can assign various weights to the hidden state of Bi-LSTM and focus on the crucial factors. Finally, the proposed two-stage ensemble thinking can further improve model generalization. The experimental results show that the proposed model can produce better forecasting performance compared to the existing ones, by almost 3.37–5.94%.

Suggested Citation

  • Wenhao Chen & Guangjie Han & Hongbo Zhu & Lyuchao Liao, 2022. "Short-Term Load Forecasting with an Ensemble Model Using Densely Residual Block and Bi-LSTM Based on the Attention Mechanism," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16433-:d:997707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    2. Singh, Priyanka & Dwivedi, Pragya, 2018. "Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem," Applied Energy, Elsevier, vol. 217(C), pages 537-549.
    3. Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
    4. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    5. Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang & Happy Aprillia & Che-Yuan Hsu & Jie-Lun Zhong & Nguyễn H. Phương, 2021. "Stacking Ensemble Method with the RNN Meta-Learner for Short-Term PV Power Forecasting," Energies, MDPI, vol. 14(16), pages 1-23, August.
    6. Singh, Priyanka & Dwivedi, Pragya & Kant, Vibhor, 2019. "A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting," Energy, Elsevier, vol. 174(C), pages 460-477.
    7. Abdallah Abdellatif & Hamza Mubarak & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Ahmad Hammoudeh & Hamdan Abdellatef & M. M. Rahman & Hassan Muwafaq Gheni, 2022. "Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model," Sustainability, MDPI, vol. 14(17), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    2. Lai, Changzhi & Wang, Yu & Fan, Kai & Cai, Qilin & Ye, Qing & Pang, Haoqiang & Wu, Xi, 2022. "An improved forecasting model of short-term electric load of papermaking enterprises for production line optimization," Energy, Elsevier, vol. 245(C).
    3. Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).
    4. Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
    5. Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
    6. Zhang, Wenyu & Chen, Qian & Yan, Jianyong & Zhang, Shuai & Xu, Jiyuan, 2021. "A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting," Energy, Elsevier, vol. 236(C).
    7. Sekhar, Charan & Dahiya, Ratna, 2023. "Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand," Energy, Elsevier, vol. 268(C).
    8. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    9. Fernández, Joaquín Delgado & Menci, Sergio Potenciano & Lee, Chul Min & Rieger, Alexander & Fridgen, Gilbert, 2022. "Privacy-preserving federated learning for residential short-term load forecasting," Applied Energy, Elsevier, vol. 326(C).
    10. Kottath, Rahul & Singh, Priyanka, 2023. "Influencer buddy optimization: Algorithm and its application to electricity load and price forecasting problem," Energy, Elsevier, vol. 263(PC).
    11. Abdallah Abdellatif & Hamza Mubarak & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Ahmad Hammoudeh & Hamdan Abdellatef & M. M. Rahman & Hassan Muwafaq Gheni, 2022. "Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model," Sustainability, MDPI, vol. 14(17), pages 1-21, September.
    12. Zheng, Peijun & Zhou, Heng & Liu, Jiang & Nakanishi, Yosuke, 2023. "Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture," Applied Energy, Elsevier, vol. 349(C).
    13. Fan, Guo-Feng & Peng, Li-Ling & Hong, Wei-Chiang, 2018. "Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model," Applied Energy, Elsevier, vol. 224(C), pages 13-33.
    14. Hui Huang & Qiliang Zhu & Xueling Zhu & Jinhua Zhang, 2023. "An Adaptive, Data-Driven Stacking Ensemble Learning Framework for the Short-Term Forecasting of Renewable Energy Generation," Energies, MDPI, vol. 16(4), pages 1-20, February.
    15. Mingping Liu & Xihao Sun & Qingnian Wang & Suhui Deng, 2022. "Short-Term Load Forecasting Using EMD with Feature Selection and TCN-Based Deep Learning Model," Energies, MDPI, vol. 15(19), pages 1-22, September.
    16. Hyojoo Son & Changwan Kim, 2020. "A Deep Learning Approach to Forecasting Monthly Demand for Residential–Sector Electricity," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    17. Liu, Xin & Zhang, Zijun & Song, Zhe, 2020. "A comparative study of the data-driven day-ahead hourly provincial load forecasting methods: From classical data mining to deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Singh, Priyanka & Kottath, Rahul, 2022. "Influencer-defaulter mutation-based optimization algorithms for predicting electricity prices," Utilities Policy, Elsevier, vol. 79(C).
    19. Ruijin Zhu & Weilin Guo & Xuejiao Gong, 2019. "Short-Term Load Forecasting for CCHP Systems Considering the Correlation between Heating, Gas and Electrical Loads Based on Deep Learning," Energies, MDPI, vol. 12(17), pages 1-18, August.
    20. Jose Cruz & Christian Romero & Oscar Vera & Saul Huaquipaco & Norman Beltran & Wilson Mamani, 2023. "Multiparameter Regression of a Photovoltaic System by Applying Hybrid Methods with Variable Selection and Stacking Ensembles under Extreme Conditions of Altitudes Higher than 3800 Meters above Sea Lev," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16433-:d:997707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.