IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11635-d916611.html
   My bibliography  Save this article

Post-Industrial Use of Sugarcane Ethanol Vinasse: A Systematic Review

Author

Listed:
  • Aarón Montiel-Rosales

    (Logistics and Sustainability Laboratory in Emerging Economy, Division of Graduate Studies and Research, National Technological of Mexico/HTI of Misantla, Km. 1.8 Carretera a Loma del Cojolite, Misantla 93821, Veracruz, Mexico)

  • Nayeli Montalvo-Romero

    (Logistics and Sustainability Laboratory in Emerging Economy, Division of Graduate Studies and Research, National Technological of Mexico/HTI of Misantla, Km. 1.8 Carretera a Loma del Cojolite, Misantla 93821, Veracruz, Mexico)

  • Luis Enrique García-Santamaría

    (Logistics and Sustainability Laboratory in Emerging Economy, Division of Graduate Studies and Research, National Technological of Mexico/HTI of Misantla, Km. 1.8 Carretera a Loma del Cojolite, Misantla 93821, Veracruz, Mexico)

  • Luis Carlos Sandoval-Herazo

    (Wetlands and Environmental Sustainability Laboratory, Division of Graduate Studies and Research, National Technological of Mexico/HTI of Misantla, Km. 1.8 Carretera a Loma del Cojolite, Misantla 93821, Veracruz, Mexico)

  • Horacio Bautista-Santos

    (Directorate-General, National Technological of Mexico/HTI of Chicontepec, Calle Barrio 2 Caminos No. 22, Barrio 2 Caminos, Chicontepec 92709, Veracruz, Mexico
    Graduate and Research Department, National Technological of Mexico/HTI of Tantoyuca, Desv. Lindero Tametate S/N Colonia La Morita, Tantoyuca 92100, Veracruz, Mexico)

  • Gregorio Fernández-Lambert

    (Logistics and Sustainability Laboratory in Emerging Economy, Division of Graduate Studies and Research, National Technological of Mexico/HTI of Misantla, Km. 1.8 Carretera a Loma del Cojolite, Misantla 93821, Veracruz, Mexico)

Abstract

Vinasse is a toxic pollutant if it is poured into the ecosystem indiscriminately; despite this, it integrates components that make it valuable in nutrients and water. However, its use has been questioned due to the costs involved in its purification. This systematic review focuses on the valorization of vinasse from the studies performed for its post-industrial use. Trends in vinasse management and bioproduct development were analyzed. The PRISMA statement was used as a formal guide for collecting and analyzing 131 studies from 2018 to 2022. We determined that biological processes are the most used to obtain the benefits of vinasse, obtaining up to three post-industrial bioproducts. While it is true that there is a predominant trend of studies focused on the generation of biofuels, it must be noted that the beginning of the sucro-alcohol chain was the agricultural field. In this sense, we determine that 14% of the studies treat vinasse for agricultural reuse purposes, so, under Circular Economy principles, the reincorporation of vinasse into the agricultural field to take advantage of its goodness in nutrients and minerals as a sustainable and eco-efficient alternative should be a research trend that accelerates the consumption of vinasse generated in alcohol distilleries.

Suggested Citation

  • Aarón Montiel-Rosales & Nayeli Montalvo-Romero & Luis Enrique García-Santamaría & Luis Carlos Sandoval-Herazo & Horacio Bautista-Santos & Gregorio Fernández-Lambert, 2022. "Post-Industrial Use of Sugarcane Ethanol Vinasse: A Systematic Review," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11635-:d:916611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thu Le Phuong & Michèle Besson, 2019. "Catalytic Wet Air Oxidation Using Supported Pt and Ru Catalysts for Treatment of Distillery Wastewater (Cognac and Sugarcane Vinasses)," Energies, MDPI, vol. 12(20), pages 1-20, October.
    2. Cortes-Rodríguez, Edgar Fernando & Fukushima, Nilton Asao & Palacios-Bereche, Reynaldo & Ensinas, Adriano V. & Nebra, Silvia A., 2018. "Vinasse concentration and juice evaporation system integrated to the conventional ethanol production process from sugarcane – Heat integration and impacts in cogeneration system," Renewable Energy, Elsevier, vol. 115(C), pages 474-488.
    3. Fuess, Lucas Tadeu & Klein, Bruno Colling & Chagas, Mateus Ferreira & Alves Ferreira Rezende, Mylene Cristina & Garcia, Marcelo Loureiro & Bonomi, Antonio & Zaiat, Marcelo, 2018. "Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno-economic and environmental approach," Renewable Energy, Elsevier, vol. 122(C), pages 674-687.
    4. John Steven Devia-Orjuela & Christian E Alvarez-Pugliese & Dayana Donneys-Victoria & Nilson Marriaga Cabrales & Luz Edith Barba Ho & Balazs Brém & Anca Sauciuc & Emese Gál & Douglas Espin & Martin Sch, 2019. "Evaluation of Press Mud, Vinasse Powder and Extraction Sludge with Ethanol in a Pyrolysis Process," Energies, MDPI, vol. 12(21), pages 1-21, October.
    5. Fuess, Lucas Tadeu & dos Santos, Graciete Mary & Delforno, Tiago Palladino & de Souza Moraes, Bruna & da Silva, Ariovaldo José, 2020. "Biochemical butyrate production via dark fermentation as an energetically efficient alternative management approach for vinasse in sugarcane biorefineries," Renewable Energy, Elsevier, vol. 158(C), pages 3-12.
    6. Nakashima, R.N. & de Oliveira Junior, S., 2020. "Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1969-1978.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Estévez, Sofía & Rebolledo-Leiva, Ricardo & Hernández, Diógenes & González-García, Sara & Feijoo, Gumersindo & Moreira, María Teresa, 2023. "Benchmarking composting, anaerobic digestion and dark fermentation for apple vinasse management as a strategy for sustainable energy production," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2020. "Comparison through energy, exergy and economic analyses of two alternatives for the energy exploitation of vinasse," Energy, Elsevier, vol. 197(C).
    3. Felipe Godoy Righetto & Carlos Eduardo Keutenedjian Mady, 2023. "Exergy Analysis of a Sugarcane Crop: A Planting-to-Harvest Approach," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    4. Juan José Rodríguez-Reyes & Octavio García-Depraect & Roberto Castro-Muñoz & Elizabeth León-Becerril, 2021. "Dark Fermentation Process Response to the Use of Undiluted Tequila Vinasse without Nutrient Supplementation," Sustainability, MDPI, vol. 13(19), pages 1-14, October.
    5. Fuess, Lucas Tadeu & dos Santos, Graciete Mary & Delforno, Tiago Palladino & de Souza Moraes, Bruna & da Silva, Ariovaldo José, 2020. "Biochemical butyrate production via dark fermentation as an energetically efficient alternative management approach for vinasse in sugarcane biorefineries," Renewable Energy, Elsevier, vol. 158(C), pages 3-12.
    6. Botshekan, Maryam & Moheb, Ahmad & Vatankhah, Fatemeh & Karimi, Keikhosro & Shafiei, Marzieh, 2022. "Energy saving alternatives for renewable ethanol production with the focus on separation/purification units: A techno-economic analysis," Energy, Elsevier, vol. 239(PE).
    7. Hidalgo, D. & Martín-Marroquín, J.M. & Corona, F., 2019. "A multi-waste management concept as a basis towards a circular economy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 481-489.
    8. Liu, Yang & Lyu, Yizheng & Tian, Jinping & Zhao, Jialing & Ye, Ning & Zhang, Yongming & Chen, Lujun, 2021. "Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Barcelos, Sheyla Thays Vieira & Ferreira, Igor Felipe Lima & Costa, Reginaldo B. & Magalhães Filho, Fernando Jorge Corrêa & Ribeiro, Alisson André & Cereda, Marney Pascoli, 2022. "Startup of UASB reactor with limestone fixed bed operating in the thermophilic range using vinasse as substrate," Renewable Energy, Elsevier, vol. 196(C), pages 610-616.
    10. Purwanta, & Bayu, Ardian Indra & Mellyanawaty, Melly & Budiman, Arief & Budhijanto, Wiratni, 2022. "Techno-economic analysis of reactor types and biogas utilization schemes in thermophilic anaerobic digestion of sugarcane vinasse," Renewable Energy, Elsevier, vol. 201(P1), pages 864-875.
    11. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    12. Vilela, R.S. & Fuess, L.T. & Saia, F.T. & Silveira, C.R.M. & Oliveira, C.A. & Andrade, P.A. & Langenhoff, A. & van der Zaan, B. & Cop, F. & Gregoracci, G.B. & Damianovic, M.H.R.Z., 2021. "Biofuel production from sugarcane molasses in thermophilic anaerobic structured-bed reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Nakashima, R.N. & de Oliveira Junior, S., 2020. "Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1969-1978.
    15. Wu, Hong, 2023. "Evaluating the role of renewable energy investment resources and green finance on the economic performance: Evidence from OECD economies," Resources Policy, Elsevier, vol. 80(C).
    16. Guilherme Peixoto & Gustavo Mockaitis & Wojtyla Kmiecik Moreira & Daniel Moureira Fontes Lima & Marisa Aparecida de Lima & Filipe Vasconcelos Ferreira & Lucas Tadeu Fuess & Igor Polikarpov & Marcelo Z, 2023. "Acidogenesis of Pentose Liquor to Produce Biohydrogen and Organic Acids Integrated with 1G–2G Ethanol Production in Sugarcane Biorefineries," Waste, MDPI, vol. 1(3), pages 1-17, August.
    17. Kucharska, Karolina & Hołowacz, Iwona & Konopacka-Łyskawa, Donata & Rybarczyk, Piotr & Kamiński, Marian, 2018. "Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels," Renewable Energy, Elsevier, vol. 129(PA), pages 384-408.
    18. Battisti, Rodrigo & Galeazzi, Andrea & Prifti, Kristiano & Manenti, Flavio & Machado, Ricardo Antonio Francisco & Marangoni, Cintia, 2021. "Techno-economic and energetic assessment of an innovative pilot-scale thermosyphon-assisted falling film distillation unit for sanitizer-grade ethanol recovery," Applied Energy, Elsevier, vol. 297(C).
    19. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    20. Ibrahim, Taiwo Hassan & Betiku, Eriola & Solomon, Bamidele Ogbe & Oyedele, Julius Olusegun & Dahunsi, Samuel Olatunde, 2022. "Mathematical modelling and parametric optimization of biomethane production with response surface methodology: A case of cassava vinasse from a bioethanol distillery," Renewable Energy, Elsevier, vol. 200(C), pages 395-404.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11635-:d:916611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.