IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p11086-d907097.html
   My bibliography  Save this article

A Hybrid Framework for Multivariate Time Series Forecasting of Daily Urban Water Demand Using Attention-Based Convolutional Neural Network and Long Short-Term Memory Network

Author

Listed:
  • Shengwen Zhou

    (School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, China)

  • Shunsheng Guo

    (School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, China)

  • Baigang Du

    (School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, China)

  • Shuo Huang

    (School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, China)

  • Jun Guo

    (School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, China)

Abstract

Urban water demand forecasting is beneficial for reducing the waste of water resources and enhancing environmental protection in sustainable water management. However, it is a challenging task to accurately predict water demand affected by a range of factors with nonlinear and uncertainty temporal patterns. This paper proposes a new hybrid framework for urban daily water demand with multiple variables, called the attention-based CNN-LSTM model, which combines convolutional neural network (CNN), long short-term memory (LSTM), attention mechanism (AM), and encoder-decoder network. CNN layers are used to learn the representation and correlation between multivariate variables. LSTM layers are utilized as the building blocks of the encoder-decoder network to capture temporal characteristics from the input sequence, while AM is introduced to the encoder-decoder network to assign corresponding attention according to the importance of water demand multivariable time series at different times. The new hybrid framework considers correlation between multiple variables and neglects irrelevant data points, which helps to improve the prediction accuracy of multivariable time series. The proposed model is contrasted with the LSTM model, the CNN-LSTM model, and the attention-based LSTM to predict the daily water demand time series in Suzhou, China. The results show that the hybrid model achieves higher prediction performance with the smallest mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE), and largest correlation coefficient (R 2 ).

Suggested Citation

  • Shengwen Zhou & Shunsheng Guo & Baigang Du & Shuo Huang & Jun Guo, 2022. "A Hybrid Framework for Multivariate Time Series Forecasting of Daily Urban Water Demand Using Attention-Based Convolutional Neural Network and Long Short-Term Memory Network," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11086-:d:907097
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/11086/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/11086/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    2. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2020. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting," Energies, MDPI, vol. 13(2), pages 1-21, January.
    3. Salah L. Zubaidi & Sadik K. Gharghan & Jayne Dooley & Rafid M. Alkhaddar & Mawada Abdellatif, 2018. "Short-Term Urban Water Demand Prediction Considering Weather Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4527-4542, November.
    4. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2020. "Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Murat Yalçıntaş & Melih Bulu & Murat Küçükvar & Hamidreza Samadi, 2015. "A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul," Sustainability, MDPI, vol. 7(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongsu Kim & Yongjun Lee & Kyungil Chin & Pedro J. Mago & Heejin Cho & Jian Zhang, 2023. "Implementation of a Long Short-Term Memory Transfer Learning (LSTM-TL)-Based Data-Driven Model for Building Energy Demand Forecasting," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    2. Jie Yang & Guihong Ren & Yaxin Wang & Qi Liu & Jiamin Zhang & Wenqi Wang & Lingzhi Li & Wuping Zhang, 2024. "Environmental Prediction Model of Solar Greenhouse Based on Improved Harris Hawks Optimization-CatBoost," Sustainability, MDPI, vol. 16(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
    2. Wenchao Ban & Liangduo Shen, 2022. "PM2.5 Prediction Based on the CEEMDAN Algorithm and a Machine Learning Hybrid Model," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    3. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    4. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    5. Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    6. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    7. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    8. Abubakar Ahmad Musa & Adamu Hussaini & Weixian Liao & Fan Liang & Wei Yu, 2023. "Deep Neural Networks for Spatial-Temporal Cyber-Physical Systems: A Survey," Future Internet, MDPI, vol. 15(6), pages 1-24, May.
    9. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    10. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    11. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    12. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    13. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    14. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    16. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    17. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
    18. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM," Energy, Elsevier, vol. 263(PE).
    19. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    20. Yiyang Sun & Xiangwen Wang & Junjie Yang, 2022. "Modified Particle Swarm Optimization with Attention-Based LSTM for Wind Power Prediction," Energies, MDPI, vol. 15(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11086-:d:907097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.