IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10198-d890068.html
   My bibliography  Save this article

Mapping of Land Degradation Vulnerability in the Semi-Arid Watershed of Rajasthan, India

Author

Listed:
  • Lal Chand Malav

    (ICAR—National Bureau of Soil Survey & Land Use Planning, Regional Centre, Udaipur 313001, India)

  • Brijesh Yadav

    (ICAR—National Bureau of Soil Survey & Land Use Planning, Regional Centre, Udaipur 313001, India)

  • Bhagwati L. Tailor

    (ICAR—National Bureau of Soil Survey & Land Use Planning, Regional Centre, Udaipur 313001, India)

  • Sarthak Pattanayak

    (Krishi Vigyan Kendra, Odisha University of Agriculture and Technology, Bolangir 751003, India)

  • Shruti V. Singh

    (Krishi Vigyan Kendra, ICAR—Indian Institute of Vegetable Research, Kushinagar 274406, India)

  • Nirmal Kumar

    (ICAR—National Bureau of Soil Survey & Land Use Planning, Amravati Road, Nagpur 440033, India)

  • Gangalakunta P. O. Reddy

    (ICAR—National Bureau of Soil Survey & Land Use Planning, Amravati Road, Nagpur 440033, India)

  • Banshi L. Mina

    (ICAR—National Bureau of Soil Survey & Land Use Planning, Regional Centre, Udaipur 313001, India)

  • Brahma S. Dwivedi

    (ICAR—National Bureau of Soil Survey & Land Use Planning, Amravati Road, Nagpur 440033, India)

  • Prakash Kumar Jha

    (Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA)

Abstract

Global soils are under extreme pressure from various threats due to population expansion, economic development, and climate change. Mapping of land degradation vulnerability (LDV) using geospatial techniques play a significant role and has great importance, especially in semi-arid climates for the management of natural resources in a sustainable manner. The present study was conducted to assess the spatial distribution of land degradation hotspots based on some important parameters such as land use/land cover (LULC), Normalized Difference Vegetation Index (NDVI), terrain characteristics (Topographic Wetness Index and Multi-Resolution Index of Valley Bottom Flatness), climatic parameters (land surface temperature and mean annual rainfall), and pedological attributes (soil texture and soil organic carbon) by using Analytical Hierarchical Process (AHP) and GIS techniques in the semi-arid region of the Bundi district, Rajasthan, India. Land surface temperature (LST) and NDVI products were derived from time-series Moderate-Resolution Imaging Spectroradiometer (MODIS) datasets, rainfall data products from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), terrain characteristics from Shuttle Radar Topography Mission (SRTM), LULC from Landsat 9, and pedological variables from legacy soil datasets. Weights derived for thematic layers from the AHP in the studied area were as follows: LULC (0.38) > NDVI (0.23) > ST (0.15) > LST (0.08) > TWI (0.06) > MAR (0.05) > SOC (0.03) > MRVBF (0.02). The consistency ratio (CR) for all studied parameters was <0.10, indicating the high accuracy of the AHP. The results show that about 20.52% and 23.54% of study area was under moderate and high to very high vulnerability of land degradation, respectively. Validation of LDV zones with the help of ultra-high-resolution Google Earth imageries indicates good agreement with the model outputs. The research aids in a better understanding of the influence of land degradation on long-term land management and development at the watershed level.

Suggested Citation

  • Lal Chand Malav & Brijesh Yadav & Bhagwati L. Tailor & Sarthak Pattanayak & Shruti V. Singh & Nirmal Kumar & Gangalakunta P. O. Reddy & Banshi L. Mina & Brahma S. Dwivedi & Prakash Kumar Jha, 2022. "Mapping of Land Degradation Vulnerability in the Semi-Arid Watershed of Rajasthan, India," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10198-:d:890068
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas L. Saaty, 1994. "How to Make a Decision: The Analytic Hierarchy Process," Interfaces, INFORMS, vol. 24(6), pages 19-43, December.
    2. Florentino Morales & Walter Timo de Vries, 2021. "Establishment of Land Use Suitability Mapping Criteria Using Analytic Hierarchy Process (AHP) with Practitioners and Beneficiaries," Land, MDPI, vol. 10(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Ganga & Mario Elia & Blaž Repe, 2023. "Applications of GIS and Remote Sensing in Soil Environment Monitoring," Sustainability, MDPI, vol. 15(18), pages 1-2, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhatta, Arun & Bigsby, Hugh R. & Cullen, Ross, 2011. "Alternative to Comprehensive Ecosystem Services Markets: The Contribution of Forest-Related Programs in New Zealand," 2011 Conference, August 25-26, 2011, Nelson, New Zealand 115350, New Zealand Agricultural and Resource Economics Society.
    2. Daniel Schatz & Rabih Bashroush, 0. "Economic valuation for information security investment: a systematic literature review," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    3. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    4. Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.
    5. Bertomeu, M. & Romero, C., 2001. "Managing forest biodiversity: a zero-one goal programming approach," Agricultural Systems, Elsevier, vol. 68(3), pages 197-213, June.
    6. Ormerod, R.J., 2014. "Critical rationalism in practice: Strategies to manage subjectivity in OR investigations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 784-797.
    7. Sunita Guru & Jitendra Nenavani & Vipul Patel & Nityesh Bhatt, 2020. "Ranking of perceived risks in online shopping," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(2), pages 137-152, June.
    8. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    9. Hartvigsen, David, 2005. "Representing the strengths and directions of pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 163(2), pages 357-369, June.
    10. Min Li & Tsung-Chih Hsiao & Chih-Cheng Chen, 2020. "Exploring the Factors of Cooperation between Artists and Technologists in Creating New Media Art Works: Based on AHP," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    11. Eliküçük, Seval & Polat, Zeynel Abidin, 2021. "Identifying key factors affecting foreigners' choice on real estate acquisition: The case of İzmir City, Turkey," Land Use Policy, Elsevier, vol. 107(C).
    12. X Li & P Beullens & D Jones & M Tamiz, 2009. "An integrated queuing and multi-objective bed allocation model with application to a hospital in China," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 330-338, March.
    13. Hyungjun Seo & Seunghwan Myeong, 2020. "The Priority of Factors of Building Government as a Platform with Analytic Hierarchy Process Analysis," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    14. Stokes, Jeffrey R. & Tozer, Peter R., 2002. "Sire selection with multiple objectives," Agricultural Systems, Elsevier, vol. 73(2), pages 147-164, August.
    15. Gerda Ana Melnik-Leroy & Gintautas Dzemyda, 2021. "How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases," Mathematics, MDPI, vol. 9(2), pages 1-25, January.
    16. Haddad, M. & Sanders, D. & Tewkesbury, G., 2020. "Selecting a discrete multiple criteria decision making method for Boeing to rank four global market regions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 1-15.
    17. Xiong Xiaoqin & Cheng Aiguo, 2020. "Evaluation of Heavy Commercial Vehicles Brand Considering Multi-Attribute Indexes in China," Journal of Systems Science and Information, De Gruyter, vol. 8(4), pages 291-308, August.
    18. Balta, Münevver Özge & Yenil, Havva Ülgen, 2019. "Multi criteria decision making methods for urban greenway: The case of Aksaray, Turkey," Land Use Policy, Elsevier, vol. 89(C).
    19. Aditi Dwivedi & Namkyu Park, 2013. "An Integrated Optimization Model for Distribution Center Location With Considerations of Population and Income," Diversity, Technology, and Innovation for Operational Competitiveness: Proceedings of the 2013 International Conference on Technology Innovation and Industrial Management,, ToKnowPress.
    20. Alessio Ishizaka & Enrique Mu, 2023. "What is so special about the analytic hierarchy and network process?," Annals of Operations Research, Springer, vol. 326(2), pages 625-634, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10198-:d:890068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.