IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9582-d880291.html
   My bibliography  Save this article

University–Industry Technology Transfer: Empirical Findings from Chinese Industrial Firms

Author

Listed:
  • Jiaming Jiang

    (Graduate School of Humanities and Social Science, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530, Japan)

  • Yu Zhao

    (School of Management, Department of Management, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan)

  • Junshi Feng

    (Graduate School of Humanities and Social Science, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530, Japan)

Abstract

The knowledge and innovation generated by researchers at universities is transferred to industries through patent licensing, leading to the commercialization of academic output. In order to investigate the development of Chinese university–industry technology transfer and whether this kind of collaboration may affect a firm’s innovation output, we collected approximately 6400 license contracts made between more than 4000 Chinese firms and 300 Chinese universities for the period between 2009 and 2014. This is the first study on Chinese university–industry knowledge transfer using a bipartite social network analysis (SNA) method, which emphasizes centrality estimates. We are able to investigate empirically how patent license transfer behavior may affect each firm’s innovative output by allocating a centrality score to each firm in the university–firm technology transfer network. We elucidate the academic–industry knowledge by visualizing flow patterns for different regions with the SNA tool, Gephi. We find that innovation capabilities, R&D resources, and technology transfer performance all vary across China, and that patent licensing networks present clear small-world phenomena. We also highlight the Bipartite Graph Reinforcement Model (BGRM) and BiRank centrality in the bipartite network. Our empirical results reveal that firms with high BGRM and BiRank centrality scores, long history, and fewer employees have greater innovative output.

Suggested Citation

  • Jiaming Jiang & Yu Zhao & Junshi Feng, 2022. "University–Industry Technology Transfer: Empirical Findings from Chinese Industrial Firms," Sustainability, MDPI, vol. 14(15), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9582-:d:880291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aihua Chen & Donald Patton & Martin Kenney, 2016. "University technology transfer in China: a literature review and taxonomy," The Journal of Technology Transfer, Springer, vol. 41(5), pages 891-929, October.
    2. Salter, Ammon J. & Martin, Ben R., 2001. "The economic benefits of publicly funded basic research: a critical review," Research Policy, Elsevier, vol. 30(3), pages 509-532, March.
    3. Mansfield, Edwin, 1991. "Academic research and industrial innovation," Research Policy, Elsevier, vol. 20(1), pages 1-12, February.
    4. Faulkner, Wendy & Senker, Jacqueline, 1994. "Making sense of diversity: public-private sector research linkage in three technologies," Research Policy, Elsevier, vol. 23(6), pages 673-695, November.
    5. Sternitzke, Christian & Bartkowski, Adam & Schramm, Reinhard, 2008. "Visualizing patent statistics by means of social network analysis tools," World Patent Information, Elsevier, vol. 30(2), pages 115-131, June.
    6. Jianyu Zhao & Guangdong Wu, 2017. "Evolution of the Chinese Industry-University-Research Collaborative Innovation System," Complexity, Hindawi, vol. 2017, pages 1-13, April.
    7. De Moortel, Kevin & Crispeels, Thomas, 2018. "International university-university technology transfer: Strategic management framework," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 145-155.
    8. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    9. D'Este, P. & Patel, P., 2007. "University-industry linkages in the UK: What are the factors underlying the variety of interactions with industry?," Research Policy, Elsevier, vol. 36(9), pages 1295-1313, November.
    10. Yindan Ye & Kevin De Moortel & Thomas Crispeels, 2020. "Network dynamics of Chinese university knowledge transfer," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1228-1254, August.
    11. Jean O. Lanjouw & Ariel Pakes & Jonathan Putnam, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    12. Hong, Wei, 2008. "Decline of the center: The decentralizing process of knowledge transfer of Chinese universities from 1985 to 2004," Research Policy, Elsevier, vol. 37(4), pages 580-595, May.
    13. Jiaming Jiang & Rajeev K. Goel & Xingyuan Zhang, 2019. "Knowledge flows from business method software patents: influence of firms’ global social networks," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1070-1096, August.
    14. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    15. Jiaming Jiang & Rajeev K. Goel & Xingyuan Zhang, 2020. "IPR policies and determinants of membership in Standard Setting Organizations: a social network analysis," Netnomics, Springer, vol. 21(1), pages 129-154, December.
    16. Akbar Zaheer & Geoffrey G. Bell, 2005. "Benefiting from network position: firm capabilities, structural holes, and performance," Strategic Management Journal, Wiley Blackwell, vol. 26(9), pages 809-825, September.
    17. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.
    18. Lanjouw, Jean O & Pakes, Ariel & Putnam, Jonathan, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    19. Loet Leydesdorff & Henry Etzkowitz, 1998. "The Triple Helix as a model for innovation studies," Science and Public Policy, Oxford University Press, vol. 25(3), pages 195-203, June.
    20. Rosenberg, Nathan & Nelson, Richard R., 1994. "American universities and technical advance in industry," Research Policy, Elsevier, vol. 23(3), pages 323-348, May.
    21. Loet Leydesdorff & Liwen Vaughan, 2006. "Co‐occurrence matrices and their applications in information science: Extending ACA to the Web environment," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(12), pages 1616-1628, October.
    22. Pavitt, Keith, 1991. "What makes basic research economically useful?," Research Policy, Elsevier, vol. 20(2), pages 109-119, April.
    23. Xia Gao & Jiancheng Guan & Ronald Rousseau, 2011. "Mapping collaborative knowledge production in China using patent co-inventorships," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 343-362, August.
    24. Bozeman, Barry, 2000. "Technology transfer and public policy: a review of research and theory," Research Policy, Elsevier, vol. 29(4-5), pages 627-655, April.
    25. Balconi, Margherita & Breschi, Stefano & Lissoni, Francesco, 2004. "Networks of inventors and the role of academia: an exploration of Italian patent data," Research Policy, Elsevier, vol. 33(1), pages 127-145, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Bestier Padilla Bejarano & Jhon Wilder Zartha Sossa & Carlos Ocampo-López & Margarita Ramírez-Carmona, 2023. "University Technology Transfer from a Knowledge-Flow Approach—Systematic Literature Review," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    2. Jiaming Jiang & Yu Zhao, 2023. "Technology Trend Analysis of Japanese Green Vehicle Powertrains Technology Using Patent Citation Data," Energies, MDPI, vol. 16(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perkmann, Markus & King, Zella & Pavelin, Stephen, 2011. "Engaging excellence? Effects of faculty quality on university engagement with industry," Research Policy, Elsevier, vol. 40(4), pages 539-552, May.
    2. Yindan Ye & Kevin De Moortel & Thomas Crispeels, 2020. "Network dynamics of Chinese university knowledge transfer," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1228-1254, August.
    3. Hawkins, Richard & Langford, Cooper H. & Saunders, Chad, 2015. "Assessing the practical application of social knowledge: A survey of six leading Canadian Universities," Research Policy, Elsevier, vol. 44(1), pages 83-95.
    4. Isabel Maria Bodas Freitas & Aldo Geuna & Federica Rossi, 2011. "University–Industry Interactions: The Unresolved Puzzle," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 11, Edward Elgar Publishing.
    5. Igors Skute & Kasia Zalewska-Kurek & Isabella Hatak & Petra Weerd-Nederhof, 2019. "Mapping the field: a bibliometric analysis of the literature on university–industry collaborations," The Journal of Technology Transfer, Springer, vol. 44(3), pages 916-947, June.
    6. Feng, Feng & Zhang, Leiyong & Du, Yuneng & Wang, Weiguang, 2015. "Visualization and quantitative study in bibliographic databases: A case in the field of university–industry cooperation," Journal of Informetrics, Elsevier, vol. 9(1), pages 118-134.
    7. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    8. Malo, Stéphane, 2009. "The contribution of (not so) public research to commercial innovations in the field of combinatorial chemistry," Research Policy, Elsevier, vol. 38(6), pages 957-970, July.
    9. Foray, Dominique & Lissoni, Francesco, 2010. "University Research and Public–Private Interaction," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 275-314, Elsevier.
    10. Uwe Cantner & Martin Kalthaus & Indira Yarullina, 2022. "Outcomes of Science-Industry Collaboration: Factors and Interdependencies," Jena Economics Research Papers 2022-003, Friedrich-Schiller-University Jena.
    11. Perkmann, Markus & Walsh, Kathryn, 2008. "Engaging the scholar: Three types of academic consulting and their impact on universities and industry," Research Policy, Elsevier, vol. 37(10), pages 1884-1891, December.
    12. Archibugi, Daniele & Filippetti, Andrea, 2018. "The retreat of public research and its adverse consequences on innovation," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 97-111.
    13. Bai, Xue-Jie & Li, Zhen-Yang & Zeng, Jin, 2020. "Performance evaluation of China's innovation during the industry-university-research collaboration process—an analysis basis on the dynamic network slacks-based measurement model," Technology in Society, Elsevier, vol. 62(C).
    14. A. Bellucci & L. Pennacchio, 2016. "University knowledge and firm innovation: evidence from European countries," The Journal of Technology Transfer, Springer, vol. 41(4), pages 730-752, August.
    15. Marina Ranga, 2012. "Stimulating R&D and Innovation to Address Romania's Economic Crisis: A Bridge Too Far?," European Planning Studies, Taylor & Francis Journals, vol. 20(9), pages 1497-1523, July.
    16. Yongli Tang & Kazuyuki Motohashi & Xinyue Hu & Angeles Montoro-Sanchez, 2020. "University-industry interaction and product innovation performance of Guangdong manufacturing firms: the roles of regional proximity and research quality of universities," The Journal of Technology Transfer, Springer, vol. 45(2), pages 578-618, April.
    17. Yuandi Wang & Die Hu & Weiping Li & Yiwei Li & Qiang Li, 2015. "Collaboration strategies and effects on university research: evidence from Chinese universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 725-749, May.
    18. Ben Zhang & Xiaohong Wang, 2017. "Empirical study on influence of university-industry collaboration on research performance and moderating effect of social capital: evidence from engineering academics in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 257-277, October.
    19. Staffan Jacobsson, 2002. "Universities and industrial transformation: An interpretative and selective literature study with special emphasis on Sweden," SPRU Working Paper Series 81, SPRU - Science Policy Research Unit, University of Sussex Business School.
    20. Larsen, Maria Theresa, 2011. "The implications of academic enterprise for public science: An overview of the empirical evidence," Research Policy, Elsevier, vol. 40(1), pages 6-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9582-:d:880291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.