IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8457-d859885.html
   My bibliography  Save this article

Study on Damage Characteristics of Water-Bearing Coal Samples under Cyclic Loading–Unloading

Author

Listed:
  • Hongxin Xie

    (School of Mines, China University of Mining and Technology, No. 1 University Rd., Xuzhou 221116, China)

  • Qiangling Yao

    (School of Mines, China University of Mining and Technology, No. 1 University Rd., Xuzhou 221116, China)

  • Liqiang Yu

    (School of Mines, China University of Mining and Technology, No. 1 University Rd., Xuzhou 221116, China)

  • Changhao Shan

    (School of Mines, China University of Mining and Technology, No. 1 University Rd., Xuzhou 221116, China)

Abstract

For underground water reservoirs in coal mines, the complex water-rich environment and changing overburden stress can damage coal pillar dams. In this paper, the coal samples from coal seam 2 2 of Shangwan coal mine were taken as research objects and the damage mechanism and characteristics of coal samples with different moisture content and wetting-drying cycles under cyclic loading were investigated. The results show that as the moisture content and wetting-drying cycles increase, the post-peak stage of the coal samples under cyclic stress becomes obvious, and the hysteresis loop changes from dense to sparse. Compared to the uniaxial compression experiment, when w = 5.28% (the critical water content), mechanical parameters such as peak strength and modulus of elasticity decrease the most. Under cyclic loading, the damage mode of both sets of coal samples was tensile damage, but the increase in wetting-drying cycles promotes the development of shear fractures. For evaluating fracture types, the RA-AF density map is more applicable to wetting-drying cycle coal samples, whereas for the coal samples with different moisture contents this should be carried out with caution. This study can provide some theoretical basis for the stability evaluation of coal pillar dams in underground water reservoirs.

Suggested Citation

  • Hongxin Xie & Qiangling Yao & Liqiang Yu & Changhao Shan, 2022. "Study on Damage Characteristics of Water-Bearing Coal Samples under Cyclic Loading–Unloading," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8457-:d:859885
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    2. Jiashen Li & Shuailong Lian & Yansen Huang & Chaolin Wang, 2022. "Study on Crack Classification Criterion and Failure Evaluation Index of Red Sandstone Based on Acoustic Emission Parameter Analysis," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    3. De Silva, G.P.D. & Ranjith, P.G. & Perera, M.S.A. & Chen, B., 2016. "Effect of bedding planes, their orientation and clay depositions on effective re-injection of produced brine into clay rich deep sandstone formations: Implications for deep earth energy extraction," Applied Energy, Elsevier, vol. 161(C), pages 24-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    3. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    4. Liang, Jiaping & Shi, Wenjuan & He, Zijian & Pang, Linna & Zhang, Yanchao, 2019. "Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 218(C), pages 48-59.
    5. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    7. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    9. Guangming Yang & Guofang Gong & Qingqing Gui, 2022. "Exploring the Spatial Network Structure of Agricultural Water Use Efficiency in China: A Social Network Perspective," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    10. Haiming Yan & Jinyan Zhan & Bing Liu & Yongwei Yuan, 2014. "Model Estimation of Water Use Efficiency for Soil Conservation in the Lower Heihe River Basin, Northwest China during 2000–2008," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    11. Gao, Hongchao & Wei, Tong & Lou, Inchio & Yang, Zhifeng & Shen, Zhenyao & Li, Yingxia, 2014. "Water saving effect on integrated water resource management," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 50-58.
    12. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    13. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    14. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    15. Li, Jiang & Mao, Xiaomin & Li, Mo, 2017. "Modeling hydrological processes in oasis of Heihe River Basin by landscape unit-based conceptual models integrated with FEFLOW and GIS," Agricultural Water Management, Elsevier, vol. 179(C), pages 338-351.
    16. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    17. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    18. Rey, D. & Holman, I.P. & Daccache, A. & Morris, J. & Weatherhead, E.K. & Knox, J.W., 2016. "Modelling and mapping the economic value of supplemental irrigation in a humid climate," Agricultural Water Management, Elsevier, vol. 173(C), pages 13-22.
    19. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    20. Rui Yang & Qijie Gao, 2021. "Water-Saving Irrigation Promotion and Food Security: A Study for China," Sustainability, MDPI, vol. 13(21), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8457-:d:859885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.